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Introduction

Legendre polynomials

Consider the Legendre polynomials Pn(x),

Pn(x) = 2F1

(
−n, n + 1

1

∣∣∣∣
1− x

2

)
=

(
x + 1

2

)n

2F1

(
−n, −n

1

∣∣∣∣
x − 1

x + 1

)

=
n∑

m=0

(
n

m

)2(x − 1

2

)m(x + 1

2

)n−m
,

where I use a standard notation for the hypergeometric series,

mFm−1

(
a1, a2, . . . , am

b2, . . . , bm

∣∣∣∣ z

)
=
∞∑

n=0

(a1)n(a2)n · · · (am)n
(b2)n · · · (bm)n

zn

n!
,

and (a)n = Γ(a + n)/Γ(a) denotes the Pochhammer symbol (or rising
factorial).
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Introduction

Brafman’s generating function

The Legendre polynomials can be alternatively given by the generating function

(1− 2xz + z2)−1/2 =
∞∑

n=0

Pn(x)zn,

but there are many other generating functions for them. One particular family of
examples is due to F. Brafman (1951).

Theorem A

The following generating series is valid:

∞∑

n=0

(s)n(1− s)n
n!2

Pn(x)zn = 2F1

(
s, 1− s

1

∣∣∣∣
1− ρ− z

2

)
·2F1

(
s, 1− s

1

∣∣∣∣
1− ρ+ z

2

)
,

where ρ = ρ(x , z) := (1− 2xz + z2)1/2.
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Introduction

Bailey’s identity

Theorem A in the form

∞∑

n=0

(s)n(1− s)n
n!2

Pn

(
X + Y − 2XY

Y − X

)
(Y − X )n

= 2F1

(
s, 1− s

1

∣∣∣∣ X

)
· 2F1

(
s, 1− s

1

∣∣∣∣ Y

)

is derived by Brafman as a consequence of Bailey’s identity for a special
case of Appell’s hypergeometric function of the fourth type,

∞∑

m,k=0

(s)m+k(1− s)m+k

m!2k!2
(
X (1− Y )

)m(
Y (1− X )

)k

= 2F1

(
s, 1− s

1

∣∣∣∣ X

)
· 2F1

(
s, 1− s

1

∣∣∣∣ Y

)
.
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Introduction

Clausen’s identity

Note that by specializing Y = X , one recovers a particular case of
Clausen’s identity:

3F2

(
1
2 , s, 1− s

1, 1

∣∣∣∣ 4X (1− X )

)
= 2F1

(
s, 1− s

1

∣∣∣∣ X

)2

.
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Introduction

Brafman–Srivastava theorem

Theorem B (Brafman (1959), Srivastava (1975))

For a positive integer N, a (generic) sequence λ0, λ1, . . . and a complex
number w,

1

ρ

∞∑

k=0

λkPNk

(
x − z

ρ

)(
w

zN

ρN

)k

=
∞∑

n=0

AnPn(x)zn,

where ρ = (1− 2xz + z2)1/2 and

An = An(w) =

bn/Nc∑

k=0

(
n

Nk

)
λkwk .

Brafman’s original results address the cases N = 1, 2 and a sequence λn
given as a quotient of Pochhammer symbols (in modern terminology, λn is
called a hypergeometric term).
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Main results

Apéry-like sequences

We extend Bailey’s identity and Brafman’s generating function to more
general Apéry-like sequences u0, u1, u2, . . . which satisfy the second order
recurrence relation

(n + 1)2un+1 = (an2 + an + b)un − cn2un−1 for n = 0, 1, 2, . . . ,

u−1 = 0, u0 = 1,

for a given data a, b and c .
The hypergeometric term un = (s)n(1− s)n/n!2 corresponds to a special
degenerate case c = 0 and a = 1, b = s(1− s) in the recursion.
Note that the generating series F (X ) =

∑∞
n=0 unX n for a sequence

satisfying the recurrence equation is a unique, analytic at the origin
solution of the differential equation

(
θ2−X (aθ2+aθ+b)+cX 2(θ+1)2

)
F (X ) = 0, where θ = θX := X

∂

∂X
.
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Main results

Gist 1: Generalized Bailey’s identity

Our first result concerns the generating function of un.

Theorem 1

For the solution un of the recurrence equation above, define

g(X ,Y ) =
X (1− aY + cY 2)

(1− cXY )2
.

Then in a neighbourhood of X = Y = 0,

{ ∞∑

n=0

unX n

}{ ∞∑

n=0

unY n

}
=

1

1− cXY

∞∑

n=0

un

n∑

m=0

(
n

m

)2

g(X ,Y )mg(Y ,X )n−m.

Therefore, Bailey’s identity corresponds to the particular choice c = 0 in
Theorem 1.
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Main results

Gist 2: Generalized Brafman’s identity

Theorem 1 also generalizes Clausen-type formulae given recently by
H. H. Chan, Y. Tanigawa, Y. Yang, and W. Z.; they arise as specialization
Y = X .
Following Brafman’s derivation of Theorem A we deduce the following
generalized generating functions of Legendre polynomials.

Theorem 2

For the solution un of the recurrence equation above, the following identity
is valid in a neighbourhood of X = Y = 0:

∞∑

n=0

unPn

(
(X + Y )(1 + cXY )− 2aXY

(Y − X )(1− cXY )

)(
Y − X

1− cXY

)n

= (1− cXY )

{ ∞∑

n=0

unX n

}{ ∞∑

n=0

unY n

}
.
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Main results

Gist 3: Special generating functions

Theorem 3

The following identities are valid in a neighbourhood of X = Y = 0:

∞∑

n=0

( 1
2 )2n
n!2

P2n

(
(1− X − Y )(X + Y − 2XY )

(Y − X )(1− X − Y + 2XY )

)
·
(

X − Y

1− X − Y + 2XY

)2n

= (1− X − Y + 2XY ) 2F1

(
1
2 ,

1
2

1

∣∣∣∣ 4X (1− X )

)
· 2F1

(
1
2 ,

1
2

1

∣∣∣∣ 4Y (1− Y )

)
,

∞∑

n=0

( 1
3 )n( 2

3 )n

n!2
P3n

(
(X + Y )(1− X − Y + 3XY )− 2XY

(Y − X )
√

p(X ,Y )

)
·
(

X − Y√
p(X ,Y )

)3n

=

√
p(X ,Y )

(1− 3X )(1− 3Y )
2F1

(
1
3 ,

2
3

1

∣∣∣∣ −
9X (1− 3X + 3X 2)

(1− 3X )3

)

× 2F1

(
1
3 ,

2
3

1

∣∣∣∣ −
9Y (1− 3Y + 3Y 2)

(1− 3Y )3

)
,

where p(X ,Y ) = (1− X − Y + 3XY )2 − 4XY .
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Main results

Fred Brafman

Fred Brafman was born on July 10, 1923 in Cincinnati,
Ohio. He attended Lebanon High School (Ohio) from
1936 to 1940, then spent a year at Greenbrier Military
School (Jr. College) before enrolling in the Engineering
School at the University of Michigan in September 1941.
He received a Bachelor of Science in Engineering (in
Electrical Engineering) degree in 1943 and then a Bachelor
of Science in Mathematics degree from Michigan in 1946.

Brafman entered the graduate program in Mathematics in the fall of 1946 and

compiled an outstanding academic record. He received an AM degree in 1947 and

a PhD in February 1951 from the University of Michigan under the supervision of

E. D. Rainville. After completion of his PhD, he was hired by the Wayne State

University, by the Southern Illinois University, and then by the University of

Oklahoma. Brafman had an invitation to visit the Institute for Advanced Studies

(Princeton) which was not materialized because of his ultimate death on

February 4, 1959 in Oklahoma. He solely authored ten mathematical papers, all

about special (orthogonal) polynomials.
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Applications

Ramanujan’s series for 1/π

In 1914 S. Ramanujan recorded a list of 17 series for 1/π, in particular,

∞∑

n=0

(14)n(12)n(34)n

n!3
(21460n + 1123) · (−1)n

8822n+1
=

4

π
,

∞∑

n=0

(14)n(12)n(34)n

n!3
(26390n + 1103) · 1

994n+2
=

1

2π
√

2

which produce rapidly converging (rational) approximations to π.
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Applications

Generalizations

An example is the Chudnovskys’ famous formula which enabled them to
hold the record for the calculation of π in 1989–94:
∞∑

n=0

(16)n(12)n(56)n

n!3
(545140134n + 13591409) · (−1)n

533603n+2
=

3

2π
√

10005
.

A more sophisticated example (which also shows that modularity rather
than hypergeometrics is crucial) is T. Sato’s formula (2002)

∞∑

n=0

un · (20n + 10− 3
√

5)

(√
5− 1

2

)12n

=
20
√

3 + 9
√

15

6π

of Ramanujan type, involving Apéry’s numbers

un =
n∑

k=0

(
n

k

)2(n + k

k

)2

∈ Z, n = 0, 1, 2, . . . ,

which satisfy the recursion

(n + 1)3un+1 − (2n + 1)(17n2 + 17n + 5)un + n3un−1 = 0.
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Applications

News from 2011

Recently, Z.-W. Sun (and G. Almkvist) experimentally observed several
new identities for 1/π of the form

∞∑

n=0

(s)n(1− s)n
n!2

(A + Bn)Tn(b, c)λn =
C

π
,

where s ∈ {1/2, 1/3, 1/4}, A,B, b, c ∈ Z, Tn(b, c) denotes the coefficient
of xn in the expansion of (x2 + bx + c)n, viz.

Tn(b, c) =

bn/2c∑

k=0

(
n

2k

)(
2k

k

)
bn−2kck ,

while λ and C are either rational or (linear combinations of) quadratic
irrationalities.
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Applications

Sun(ny) identities

Examples:

∞∑

n=0

(
2n

n

)2

(7 + 30n)
Tn(34, 1)

(−210)n
=

12

π
,

∞∑

n=0

(3n)!

n!3
(1 + 18n)

Tn(730, 729)

303n
=

25
√

3

π
,

∞∑

n=0

(4n)!

(2n)!n!2
(13 + 80n)

Tn(7, 4096)

(−1682)n
=

14
√

210 + 21
√

42

8π
,

∞∑

n=0

(
2n

n

)2

(1 + 10n)
T2n(38, 1)

2402n
=

15
√

6

4π
,

∞∑

n=0

(3n)!

n!3
(277 + 1638n)

T3n(62, 1)

(−240)3n
=

44
√

105

π
.
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Applications

History (following (the) Sun)

CONJECTURAL SERIES FOR POWERS OF π AND OTHER CONSTANTS17

respectively. I conjecture that (IV1)-(IV18) have exhausted all identities
of the form

∞∑

k=0

(a+ dk)

(
2k
k

)2
T2k(b, 1)

mk
=

C

π

with a, d,m ∈ Z, b ∈ {1, 3, 4, . . .}, d > 0, and C2 positive and rational.

Conjecture V (Z. W. Sun [S11a]). We have the formula

∞∑

k=0

1638k + 277

(−240)3k

(
2k

k

)(
3k

k

)
T3k(62, 1) =

44
√
105

π
. (V1)

Remark. The series (V1) converges at a geometric rate with ratio−64/125.

3. Historical notes on the 40 series in Section 2

I discovered all those conjectural series for 1/π in Section 2 during Jan.
and Feb. in 2011. They came from a combination of my philosophy,
intuition, inspiration, experience and computation.

In the evening of Jan. 1, 2011 I figured out the asymptotic behavior of
Tn(b, c) with b and c positive. (Few days later I learned the Laplace-Heine
asymptotic formula for Legendre polynomials and hence knew that my
conjectural main term of Tn(b, c) as n → +∞ is indeed correct.)

The story of new series for 1/π began with (I1) which was found in the
early morning of Jan. 2, 2011 immediately after I waked up on the bed. On
Jan 4 I announced this via a message to Number Theory Mailing List

as well as the initial version of [S11a] posted to arXiv. In the subsequent
two weeks I communicated with some experts on π-series and wanted to
know whether they could prove my conjectural (I1). On Jan. 20, it seemed
clear that series like (I1) could not be easily proved by the current known
methods used to establish Ramanujan-type series for 1/π.

Then, I discovered (II1) on Jan. 21 and (III3) on Jan. 29. On Feb. 2
I found (IV1) and (IV4). Then, I discovered (IV2) on Feb. 5. When I
waked up in the early morning of Feb. 6, I suddenly realized a (conjec-
tural) criterion for the existence of series for 1/π of type IV. Based on this
criterion, I found (IV3), (IV5)-(IV10) and (IV12) on Feb. 6, (IV11) on
Feb. 7, (IV13) on Feb. 8, (IV14)-(IV16) on Feb. 9, and (IV17) on Feb.
10. On Feb. 14 I discovered (I2)-(I4) and (III4). I found the sophisticated
(III5) on Feb. 15. As for series of type IV, I discovered the largest example
(IV18) on Feb. 16., and conjectured that the 18 series in Conj. IV have
exhausted all those series for 1/π of type IV. On Feb. 18 I found (II2),
(II5)-(II7), (II10) and (II12).

On Feb. 21 I informed many experts on π-series my list of the 34
conjectural series for 1/π of types I-IV and predicted that there are totally
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Applications

Sun’s trinomials

The binomial sums Tn(b, c) can be expressed via the classical Legendre
polynomials

Pn(x) = 2F1

(
−n, n + 1

1

∣∣∣∣
1− x

2

)

by means of the formula

Tn(b, c) = (b2 − 4c)n/2Pn

(
b

(b2 − 4c)1/2

)
,

so that the above equalities assume the form

∞∑

n=0

(s)n(1− s)n
n!2

(A + Bn)Pn(x0)zn
0 =

C

π
.
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Applications

Modular parametrization

I briefly indicate how the results above allow one to prove identities for 1/π.
Suppose that we have an arithmetic sequence un satisfying the recurrence given
earlier, and denote by

F (t) :=
∞∑

n=0

untn and G (t) :=
∞∑

n=0

unntn = t
dF

dt

the corresponding generating function and its derivative.
Then there exists a modular function t(τ) on a congruence subgroup of SL2(Z)
such that F (t(τ)) is a weight 1 modular form on the subgroup.
In particular, for a quadratic irrationality τ0 with Im τ0 > 0, the value t(τ0) is an
algebraic number and, under some technical conditions on |t(τ0)|, there is a
Ramanujan-type series of the form

aF 2(t(τ0)) + 2bF (t(τ0))G (t(τ0)) =
c

π
,

where a, b and c are certain (effectively computable) algebraic numbers.
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Applications

Calculus

Suppose furthermore that we have a functional identity of the form
∞∑

n=0

unP`n(x)zn = γF (α)F (β),

where ` ∈ {1, 2, 3}, and α, β and γ are algebraic functions of x and z .
Note that Theorems A, 2 and 3 are a source of such identities. Computing
the z-derivative of the both sides of the latter equality results in

∞∑

n=0

unnP`n(x)zn = γ0F (α)F (β) + γ1F (α)G (β) + γ2G (α)F (β),

where γ0, γ1 and γ2 are again algebraic functions of x and z . We now
take algebraic x = x0 and z = z0, from the convergence domain, in the
last equalities such that the corresponding quantities α = α(x0, z0) and
β = β(x0, z0) are values of the modular function t(τ) at quadratic
irrationalities: α = t(τ0), and β = t(τ0/N) or 1− t(τ0/N) for an integer
N > 1.
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Applications

Modular equations

Using the corresponding modular equation of degree N, we can always
express F (β) and G (β) by means of F (α) and G (α) only:

F (β) = µ0F (α) and G (β) = λ0F (α) + λ1G (α) +
λ2

πF (α)
,

where µ0, λ0, λ1, and λ2 are algebraic (in fact, λ2 = 0 when
β = t(τ0/N)). Substituting these relations into the equalities from the
previous slide and choosing the algebraic numbers A and B appropriately,
we find that the sum

∑∞
n=0 un(A + Bn)P`n(x0)zn

0 is an algebraic multiple
of π,

∞∑

n=0

un(A + Bn)P`n(x0)zn
0 =

C

π

where A, B and C are algebraic numbers.
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Applications

Identities for 1/π

In practice, all the algebraic numbers involved are extremely cumbersome,
so that the computations happen to be quite involved.
Using the theorems we are able to produce many more examples of the
type considered by Sun:

∞∑

n=0

(12)2n
n!2

(2 + 15n) P2n

(
3
√

3

5

)(
2
√

2

5

)2n

=
15

π
,

∞∑

n=0

(13)n(23)n

n!2
(1 + 9n)P3n

(
4√
10

)(
1

3
√

10

)3n

=

√
15 + 10

√
3

π
√

2
,

∞∑

n=0

n∑

k=0

(
n + k

k

)(
n

k

)2

·
(
16− 5

√
10 + 60n

)

×Pn

(
5
√

2 + 17
√

5

45

)(
5
√

2− 3
√

5

5

)n

=
135
√

2 + 81
√

5

π
√

2
.
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