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Abstract

We present three applications of the hypergeometric method to
the arithmetic study of polylogarithm values and, in particular, of
zeta values. Part 1 is joint work with Khodabakhsh and Tatiana
Hessami Pilehrood on the irrationality of certain numbers involving
di- and trilogarithms. In Part 2 we give three hypergeometric con-
structions leading to simultaneous approximations to ζ(2) and ζ(3).
Part 3 contains a curious hypergeometric identity for the known ra-
tional approximations to ζ(4); the identity suggests an extension of
the hypergeometric technique which might lead to a natural way to
prove the so-called Denominator Conjectures for zeta values.

It seems that a dominating technique in the study of arithmetic proper-
ties of values of the polylogarithmic functions

Lij(z) =
∞∑
l=1

zl

lj
, |z| < 1, j = 1, 2, 3, . . . ,

and, in particular, of zeta values ζ(j) = Lij(1) for j ≥ 2, is the hypergeo-
metric one. Approximations to the functions can be represented by means
of classical hypergeometric series as well as their integral and multiple ex-
tensions. In this lecture I touch three applications of the hypergeometric
technique. Part 1 is joint work with Khodabakhsh and Tatiana Hessami

1A talk at the conference “Diophantine approximation and transcendental numbers”
(CIRM, Marseille Luminy, September 4–8, 2006).
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Pilehrood on the irrationality of certain numbers involving values of Li2(z)
and Li3(z). In Part 2 I give three different hypergeometric constructions
leading to simultaneous approximations to ζ(2) and ζ(3). Although this
does not result in the linear independence of the numbers with 1 over Q,
I obtain new rational approximations to ζ(2) and ζ(3) yielding their irra-
tionality. Finally, Part 3 contains a new hypergeometric identity for the
known rational approximations to ζ(4). The identity suggests an extension
of the hypergeometric technique which might lead to a natural way to prove
the so-called Denominator Conjectures for zeta values.

1 Irrationality of certain numbers that

contain values of the di- and trilogarithm

The irrationality result proved jointly with Khodabakhsh and Tatiana Hes-
sami Pilehrood in [4] involves the values of the functions

fj(z) = Lij(z)− Li1(z) · logj−1 z

(j − 1)!
, j = 2, 3, . . . .

Recall that Li1(z) = − log(1− z).

Theorem 1. For z ∈ {1/2, 2/3, 3/4, 4/5}, at least one of the two numbers
f2(z) and f3(z) is irrational.

Using the classical formulae (see, e.g., [6, equations (1.11) and (6.10)])
we may also express the functions f2(z) and f3(z) as follows:

f2(z) =
π2

6
− Li2(1− z),

f3(z) = ζ(3) +
1

6
log3 z +

π2

6
log z − Li3(1− z)− Li3(1− z−1).

Moreover, the values of these functions at the point z = 1/2 are computed
by means of log 2, ζ(2) = π2/6 and ζ(3) (see [6, equations (1.16) and (6.12)]):

f2(1/2) =
1

2
ζ(2) +

1

2
log2 2, f3(1/2) =

7

8
ζ(3)− 1

2
ζ(2) log 2− 1

3
log3 2.

Using these formulae we obtain the following corollary of Theorem 1.
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Theorem 2. At least one of the two numbers

π2 + 6 log2 2 and ζ(3)− 2

21
(π2 + 4 log2 2) log 2

is irrational.

Relative results, ‘at least one of the numbers 3ζ(3)−cζ(2), ζ(2)−2c log 2
(c ∈ Q) is irrational’ and ‘at least one of the numbers Li2(1/q), Li3(1/q)
(q ∈ Z \ {0, 2}) is irrational’, are proved in [2] and [3], respectively. The
irrationality of Li2(1/q) is known [9] for integers q ≤ −5 and q ≥ 6.

Our proof relies on a general hypergeometric construction of two linear
forms in the polylogarithms and positive powers of the logarithm, respec-
tively. This idea was recently used in [1] for proving that at least one of
the three numbers f2(1/2), f3(1/2) and f4(1/2) is irrational. We are able
to improve this earlier result and present the related ones due to the pow-
erful group-structure arithmetic method introduced in [7] and [8] in order
to prove new estimates for irrationality measures of ζ(2) and ζ(3) (see also
[9] and [12]).

As usual for the hypergeometric method, we start with a rational func-
tion R(t):

R(a, b; t) =

∏s
j=1 Γ(bj − aj)

Γ(a0)

s∏
j=0

Γ(t + aj)

Γ(t + bj)

=

∏s
j=1(bj − aj − 1)!

(a0 − 1)!
· (t + 1)(t + 2) · · · (t + a0 − 1)∏s

j=1(t + aj) · · · (t + bj − 1)

=
s∑

j=1

bj−1∑
k=aj

Ajk

(t + k)j
, (1)

where the set of integer parameters a, b satisfies

b0 = 1 < a0 ≤ a1 ≤ a2 < · · · ≤ as < bs ≤ bs−1 ≤ · · · ≤ b1,
s∑

j=0

aj <

s∑
j=0

bj, a0 + as ≤ bs.
(2)
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Then our main objects are as follows:

I = I(a, b; z) =
∞∑

t=1−a0

R(t)zt+a0 =
s∑

j=1

bj−1∑
k=aj

Ajkz
−k+a0

∞∑
t=1−a0

zt+k

(t + k)j

=
s∑

j=1

bj−1∑
k=aj

Ajkz
−k+a0

(
Lij(z)−

k−a0∑
l=1

zl

lj

)

=
s∑

j=1

Lij(z) ·
bj−1∑
k=aj

Ajkz
−k+a0 −

s∑
j=1

bj−1∑
k=aj

Ajk

k−a0∑
l=1

z−(k−a∗0−l)

lj

=
s∑

j=1

Pj(z
−1) Lij(z)− P0(z

−1), (3)

and (the closed contour L below surrounds all poles t = −k for a1 ≤ k < b1

of the rational function R(t))

J = J(a, b; z) =
za0

2πi

∮
L

R(t)zt dt = za0

∑
k

Rest=−k(R(t)zt)

=
s∑

j=1

∑
k

Ajkz
−k+a0 · Rest=−k

zt+k

(t + k)j
=

s∑
j=1

∑
k

Ajkz
−k+a∗0 · logj−1 z

(j − 1)!

=
s∑

j=1

Pj(z
−1)

logj−1 z

(j − 1)!
. (4)

All this means that we arrange to construct ‘simultaneous’ approximations
to the set of polylogarithms Li1(z), . . . , Lis(z) and to the set of logarithm
powers log z, . . . , 1

(s−1)!
logs−1 z. This is essentially the idea from [1, Theo-

rem 3].
We are interested in the hypergeometric series I and the hypergeometric

integral J in the special case

aj = αjn + 1, j = 0, 1, . . . , n, and bj = βjn + 2, j = 1, . . . , n,
(5)

where α0, α1, . . . , αn and β1, . . . , βn are positive integers. We stress that
finding correct denominators of the coefficients of the involved polynomi-
als Pj(z

−1) is based on the asymmetry of the rational function R(t): any
permutation of the parameters a0, a1, . . . , as remains the shapes of I and J .
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Computing analytic and arithmetic behaviour of I and J as n → ∞, we
apply the asymptotic results to the linear forms

L(a, b; z) = I(a, b; z)− Li1(z)J(a, b; z) =
s∑

j=2

Pj(z
−1)fj(z)− P0(z

−1)

choosing s = 3. It happens that an optimal choice for the integer parameters
α, β depends on z ∈ {1/2, 2/3, 3/4, 4/5}. For example, if z = 1/2 we take

(α0, α1, α2, α3; β1, β2, β3) = (3, 4, 5, 6; 17, 16, 15).

For technical details, I refer to the paper [4].

2 Simultaneous approximations

to ζ(2) and ζ(3)

The three hypergeometric constructions below depend on an increasing in-
teger parameter n.

First [10] I take the rational functions

Rn(t) = −
n!2

∏n
j=1(t− j)∏n

j=0(t + j)3
, R′

n(t) =
n!2

∏n
j=0(t− j)∏n

j=0(t + j)3
,

and consider the corresponding hypergeometric series

rn =
∞∑

k=1

Rn(t)
∣∣
t=ν

= qnζ(3) + pnζ(2)− sn,

r′n =
∞∑

k=1

R′
n(t)

∣∣
t=ν

= q′nζ(3) + p′nζ(2)− s′n,

where
qn, q

′
n ∈ Z, Dnpn, Dnp

′
n ∈ Z, D3

nsn, D
3
ns
′
n ∈ Z, (6)

Dn stands for the least common multiple of the numbers 1, 2, . . . , n (and
D0 = 1). The standard eliminating argument leads one to the linear forms

qnr
′
n − q′nrn = (qnp

′
n − q′npn)ζ(2)− (qns

′
n − q′nsn) = unζ(2)− vn,

p′nrn − pnr
′
n = (qnp

′
n − q′npn)ζ(3)− (p′nsn − pns

′
n) = unζ(3)− wn,
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where, by (6),
Dnun ∈ Z, D3

nvn ∈ Z, D4
nwn ∈ Z. (7)

My second construction [14] is based on the rational function

R̃n(t) =
((t− 1)(t− 2) · · · (t− n))3

n!2 · t(t + 1) · · · (t + n)
.

Then hypergeometric approximations to the first three polylogarithms are
given by the series

r̃n(z) =
∞∑

ν=1

zνR̃n(t)
∣∣
t=ν

= ũn(z) Li1(z)− s̃n(z),

r̃′n(z) = −
∞∑

ν=1

zν dR̃n(t)

dt

∣∣∣∣
t=ν

= ũn(z) Li2(z)− ṽn(z),

r̃′′n(z) =
1

2

∞∑
ν=1

zν d2R̃n(t)

dt2

∣∣∣∣
t=ν

= ũn(z) Li3(z)− w̃n(z),

where

ũn(z) = (−1)n

n∑
k=0

(
n

k

)(
n + k

k

)3(
−1

z

)k

(8)

and
zn
1 ũn(z) ∈ Z, (z1z2)

nDns̃n(z) ∈ Z,

(z1z2)
nDnD2nṽn(z) ∈ Z, (z1z2)

nDnD
2
2nw̃n(z) ∈ Z,

(9)

z1 and z2 denote the denominators of the numbers 1/z and z/(1 − z), re-
spectively.

I am interested in the limiting case z → 1 when one has

r̃′n(1) = ũnζ(2)− ṽn, r̃′′n(1) = ũnζ(3)− w̃n, n = 0, 1, . . . ,

where for ũn = ũn(1), ṽn = ṽn(1), and w̃n = w̃n(1) from (8), (9) one can
obtain

ũn ∈ Z, DnD2nṽn ∈ Z, DnD
2
2nw̃n ∈ Z. (10)

Finally, we take the rational function

˜̃
Rn(t) =

(t− 1)(t− 2) · · · (t− n) · (2t− 1)(2t− 2) · · · (2t− n)

(t(t + 1)(t + 2) · · · (t + n))2
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and consider the following two series:

1

2

∞∑
ν=1

(−1)ν−1Rn(t)
∣∣
t=ν/2

= ˜̃unζ(2)− ˜̃vn,

−1

2

∞∑
ν=1

dRn(t)

dt

∣∣∣∣
t=ν

= ˜̃unζ(3)− ˜̃wn.

The explicit formulae for the approximants allow one to show that

˜̃un =
n∑

k=0

(
n

k

)2(
n + k

n

)(
n + 2k

n

)
∈ Z,

D2
2n

˜̃vn ∈ Z, D3
n
˜̃wn ∈ Z,

for n = 0, 1, 2, . . . . (11)

Theorem 3. For n = 0, 1, 2, . . . , one has(
2n

n

)−1

un = ũn = ˜̃un,

(
2n

n

)−1

vn = ṽn = ˜̃vn,

(
2n

n

)−1

wn = w̃n = ˜̃wn,

(12)
that is, the three hypergeometric constructions give the same sequence of
simultaneous rational approximations to 1, ζ(2) and ζ(3).

From Theorem 3 and the inclusions (6), (10), (11) one may easily deduce
that

ũn ∈ Z, DnD2nṽn ∈ Z, D3
nw̃n ∈ Z, for n = 0, 1, 2, . . . . (13)

Theorem 3 can be shown by means of certain hypergeometric identities.
A simpler way (used in [10] and [14]) is based on the algorithm of creative
telescoping. Indeed, the following statement is valid.

Theorem 4. The above sequences (12) satisfy the Apéry-type polynomial
recurrence relation

2(946n2 − 731n + 153)(2n + 1)(n + 1)3un+1

− 2(104060n6 + 127710n5 + 12788n4 − 34525n3 − 8482n2 + 3298n + 1071)un

+ 2(3784n5 − 1032n4 − 1925n3 + 853n2 + 328n− 184)nun−1

− (946n2 + 1161n + 368)n(n− 1)3un−2 = 0, n = 2, 3, . . . ,

of order 3, and the necessary initial data is as follows:

ũ0 = 1, ũ1 = 7, ũ2 = 163,

ṽ0 = 0, ṽ1 =
23

2
, ṽ2 =

2145

8
, w̃0 = 0, w̃1 =

17

2
, w̃2 =

3135

16
.
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In addition,

lim sup
n→∞

|r̃′n|1/n = lim sup
n→∞

|r̃′′n|1/n = |λ1,2| = 0.067442248 . . . ,

lim
n→∞

|ũn|1/n = lim
n→∞

|ṽn|1/n = lim
n→∞

|w̃n|1/n = λ3 = 54.96369509 . . . ,

where λ1,2 = 0.018152450 . . . ± i0.064953409 . . . and λ3 are zeros of the
characteristic polynomial 4λ3 − 220λ2 + 8λ− 1.

Since log |λ1,2| = −2.69648361 . . . > −3, from (13) and Theorem 4 we
cannot conclude about the irrationality of either ζ(2) or ζ(3). However, the
use of an asymmetric rational function

R(t) = R(a, b; t)

=
(2t + b0)(2t + b0 + 1) · · · (2t + a0 − 1)

(a0 − b0)!
· (t + b1) · · · (t + a1 − 1)

(a1 − b1)!

× (b2 − a2 − 1)!

(t + a2) · · · (t + b2 − 1)
· (b3 − a3 − 1)!

(t + a3) · · · (t + b3 − 1)

=
(b2 − a2 − 1)! (b3 − a3 − 1)!

(a0 − b0)! (a1 − b1)!
· Γ(2t + a0) Γ(t + a1) Γ(t + a2) Γ(t + a3)

Γ(2t + b0) Γ(t + b1) Γ(t + b2) Γ(t + b3)
,

where the integers a and b satisfy

b1 = 1 < a1, a2, a3 < b2, b3, b0 < a0 ≤ 2 max{a1, a2, a3},
a0 + a1 + a2 + a3 ≤ b0 + b1 + b2 + b3 + 2,

lead to the following curious application.
Taking

a0 = 10n + 1
2
, a1 = 6n + 1, a2 = 7n + 1, a3 = 8n + 1,

b0 = 6n + 1, b1 = 1, b2 = 13n + 2, b3 = 12n + 2,

for the coefficients of linear forms

rn =
∞∑

ν=−10n

(−1)νR(t)
∣∣
t=ν/2

= unζ(2)− vn,

r′n =
∞∑

ν=−5n

dR(t)

dt

∣∣∣∣
t=ν

= unζ(3)− wn,

we obtain the inclusions

Φ−1
n un ∈ Z, D8nD16nΦ−1

n vn ∈ Z, D3
8nΦ−1

n wn ∈ Z,
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where Φn is a certain product over primes,

lim
n→∞

log Φn

n
= 8.48973583 . . . .

On the other hand,

lim sup
n→∞

log |rn|
n

= lim sup
n→∞

log |r′n|
n

= −17.610428885 . . . .

Thus, the linear forms rn and r′n allow one to deduce the irrationality of
ζ(2) and ζ(3), respectively, but not on their Q-linear independence with 1
(the common denominator of the coefficients is D2

8nD16nΦ−1
n ).

3 A hypergeometric identity related

to rational approximations to ζ(4)

For each n = 0, 1, 2, . . . , consider the following two rational functions:

Rn(t) = (−1)n
(
t +

n

2

)∏n
l=1(t− l)2 ·

∏n
l=1(t + n + l)2∏n

l=0(t + l)4
(14)

and

R̃n(t) =
n!

∏n
l=1(t− l)∏n

l=0(t + l)2

n∑
j=0

(
n

j

)2(
n + j

n

)∏n−1
l=0 (t− j + l)

n!
. (15)

Problem 1. Prove that the following equality is valid for any n ≥ 0:

− 1

3

∞∑
ν=1

dRn(t)

dt

∣∣∣∣
t=ν

=
1

3

∞∑
ν=1

d2R̃n(t)

dt2

∣∣∣∣
t=ν

. (16)

The series on the left-hand side is the familiar sequence unζ(4) − vn,
n = 0, 1, 2, . . . , of rational approximations to ζ(4); both the un and vn

satisfy the Apéry-like recursion [11]

(n + 1)5un+1 − 3(2n + 1)(3n2 + 3n + 1)(15n2 + 15n + 4)un

− 3n3(3n− 1)(3n + 1)un−1 = 0 for n ≥ 1, (17)

with the initial data u0 = 1, u1 = 12 and v0 = 0, v1 = 13.
Concerning the right-hand side of (16), write

R̃n(t) =
n∑

k=0

(
A

(n)
k

(t + k)2
+

B
(n)
k

t + k

)
(18)
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and use the standard routine to show that

1

3

∞∑
ν=1

d2R̃n(t)

dt2

∣∣∣∣
t=ν

= ũnζ(4)− ṽn, (19)

where

ũn =
n∑

k=0

A
(n)
k =

n∑
k=0

(
n

k

)2(
n + k

n

) n∑
j=0

(
n

j

)2(
n + j

n

)(
k + j

n

)
, (20)

ṽn =
n∑

k=0

k∑
l=1

(
A

(n)
k

l4
+

B
(n)
k

3l3

)
. (21)

The equality un = ũn (cf. (20)) for any n ≥ 0 was first established in [5]
(see also [13]). I have verified the equality vn = ṽn (using the recursion for
vn and the representation (21) for ṽn) up to n = 20. This has led me to the
expectation (16). It can be shown by the algorithm of creative telescoping
for double hypergeometric series. However one can hardly learn from this
algorithmic proof how to generalize identity (16).

The advantage of the representation on the left-hand side of (16) is a
simplicity of computing analytic aspects of the approximations unζ(4)− vn

as n →∞. From (18)–(21) one easily obtains the arithmetic information

Φ−1
n · ũn ∈ Z, Φ−1

n · 3D4
nṽn ∈ Z, n = 0, 1, 2, . . . , (22)

where Dn denotes the least common multiple of the numbers 1, 2, . . . , n and
Φn =

∏
p pbνp/2c with νp = ν

(n)
p = ordp(3n)!/n!3. The known way [5] of

deducing inclusions (22) for the left-hand side of (16) is very-very sophisti-
cated...

A puzzling thing is that the series on the right-hand side of (16) does
not look tending to 0 as n →∞. In fact, analytic investigation of the series
and its leading coefficient ũn seems to be beyond the reach. The moral is:
use the left-hand side of (16) for establishing the analytic behaviour and
the right-hand side for the arithmetic one.

Of course, the main goal of showing (16) is the following

Problem 2. Find and prove an appropriate analogue of identity (16) for the
general linear approximations to ζ(4) considered in [11]. Use it to deduce
the general denominator conjecture from [11].

I would expect that there are plenty of other identities of similar kind,
especially for the well-poised linear forms in zeta values treated in [5]. This
seems to be a promising way of proving general denominator conjectures.
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Until the last summer I was pretty sure that all reasonable approxima-
tions to the values of polylogarithms are produced by summing a rational
function glued from the elementary rational bricks∏b−1

j=a(t + j)

(b− a)!
and

(b− a− 1)!∏b−1
j=a(t + j)

.

Looking on the right-hand side of (16) I see how mistaken I was.
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