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Derivatives of Siegel modular forms
and exponential functions

D. Bertrand and W. Zudilin

Abstract. We show that the differential field generated by Siegel modular forms
and the differential field generated by exponentials of polynomials are linearly dis-
joint over C. Combined with our previous work [3], this provides a complete multi-
dimensional extension of Mahler’s theorem on the transcendence degree of the field
generated by the exponential function and the derivatives of a modular function.
We give two proofs of our result, one purely algebraic, the other analytic, but both
based on arguments from differential algebra and on the stability under the action
of the symplectic group of the differential field generated by rational and modular
functions.

§ 1. Introduction and statement of results

In 1969, Mahler [1] proved that, for any non-constant modular function
f:{r € C:S37 > 0} - C and any non-zero complex number ¢, the five func-
tions

7, q(r) =€, f(7), f(7), and f"(7)

are algebraically independent over C. Here the prime denotes differentiation with
respect to 7. Since f”/(7) is rational over C(f(7), f'(7), f”(7)), it follows that each
of the fields

C(f(r), f/(7), £ (7)), Cl, f(7), f'(7), £ (7)),
Clg(r), £(), (), f(7)),  Clr,q(7), £(7), F'(7), (7))

is differentially stable, and their transcendence degrees over C are respectively equal
to 3,4,4,5. Mahler’s result was extended on the one hand to more general automor-
phic functions in one variable by Nishioka [2], and on the other to Siegel modular
functions of arbitrary degree in our paper [3]. In the latter case, however, the
corresponding collection did not contain the exponential function. The aim of the
present paper is to complete our generalization [3] by adding exponentials.

To state our results explicitly, we use the same notation as in [3]. Let g be a
positive integer (called the degree or genus), let k be an algebraically closed subfield
of C, and make the following definitions.
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$g = the Siegel half-space of degree g. The Q-vector group Z, formed by the
symmetric matrices of order g has dimension

_9lg+1)
2 Y

and ), is open in Z,(C).

T = (7j1)1<j<i<q 1S a generic point in §g4, so that k(27iT) can be viewed as the
field of rational functions on Z,/k.

6 ={d;;, 1 <j <1< g}, where

1 0 1 0

dji=-—7—, 1<j<i<g, and §j;=—7-—

= 1<7<aqg.
27‘('2'87'9'1, SS9

e 8Tjj ’
These n partial derivatives form a k(27i7)-basis of Der(k(27iT)/k).
I' = a congruence subgroup of the symplectic group szg(Z) (equivalently, a sub-
group of finite index if g > 1).
K := K(I', k) = the field of modular functions with respect to I'. It is well known
that K is a finitely generated extension of k of transcendence degree
glg+1)

If g > 1, the field K ®; C is identified with the field of meromorphic functions
on §), that are invariant under the action of I

M = M (T, k) = the §-differential field generated by K, that is, the field generated
over k by the partial §;;-derivatives of all orders of all elements of K.

We proved in Theorem 1 of [3] that the d-differential field M is a finite extension
of the field generated over K by the §-partial derivatives of order < 2 of the elements
of K, and that it has finite transcendence degree over k, equal to

trdeg;, M = dim Sp,, = 2¢° + g. (1)

Furthermore, M and C(7) are linearly disjoint over k, so that

1
trdegy, M (1) = dim Spy, +n = 59(59 + 3). (2)

We extend this theorem as follows.

Theorem 1. Let M be the d-differential field generated by the field K of modular
functions, and let ¢ be an arbitrary non-zero complex number. Then the exponentials
et 1 < j <1< g, are algebraically independent over M (1), whence

trdegy, M(7,e") = dim Sp,, + 2n = 39° + 2g.

This paper is organized as follows. §2 contains some preliminaries on the action
of I' on ), and on Z,. In §§3, 4 we give two independent proofs of Theorem 1.
More precisely, the proof in §3 is based on a theorem of Ax (a functional version
of Schanuel’s conjecture) and is of a purely algebraic nature, while the proof in §4
uses an easier version of Ax’s theorem (namely, Kolchin’s multiplicative analogue
of Ostrowski’s theorem) and an analytic argument. The second proof yields the
following sharpening of Theorem 1.
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Theorem 2. In the notation of Theorem 1, let {Q1,...,Qn} be an arbitrary set
of polynomials in T = (Tj1)1<j<i<g With complex coefficients and no constant terms.
Assume that Q1,...,QnN are linearly independent over Q. Then the functions
eQ1(T) . eQN(T) are algebraically independent over M(T).

Finally, §5 is devoted to the study of modular thetanulls with special emphasis
on the case of genus 2. In this case we explicitly describe the Fourier expansions
of some logarithmic derivatives of thetanulls (that is, expansions in terms of the
exponential functions et with ¢ = 7).

Remark 1. Although inspired by the proofin [2], the algebraic and analytic methods
of adding exponentials to the differential field generated by modular forms are new,
even in the case of genus 1. The second author used similar arguments in another
paper [4], where the exponential function is added to the differential field generated
by the so-called Yukawa (quantum) coupling.

§ 2. Preliminaries

As mentioned in [3], it is enough to prove our theorems when
I'= Sp2g(Z)

is the full modular group. Similarly, there is no loss of generality in taking the
complex numbers

k=C

as the field of constants. These hypotheses will be assumed henceforth.

As in [1] and [2], the following remark plays a crucial role in our proofs. Apart
from the finiteness of the transcendence degree of M over C (see § 1, formula (1) and
§4) or, alternatively, the algebraic independence of 7j; over M (see § 1, formula (2)
and § 3), there is only one property of the differential field M (7) we actually need.!
We recall that the group I' has a rational action (on the left) on the Siegel half-

space $g4:

(v, 7) >y -7 = (a1-—|—b)(07-—|—d)_1 for all (’y = (Z Z),T) eIl x §y,

so that it acts (on the right) on the field 9t of meromorphic functions on ), by

(vhHey-frre(y-f)r):=f(y-7) forall (v,f) el xM.

The subfield M of 9 is not stable under I', but we have the following lemma.
Lemma 1. The field M (1) is stable under the action of T.

Proof. Asin [3], §4, for each m =0, 1,..., 00 we denote by K (™) the field generated
over C by the d-derivatives of order < m of all the elements of K. Thus, K =
Kc KM c-...c K(®) = M. We shall prove by induction on m that K™ (1)
is stable under I'. The definition of K makes this clear for m = 0 (and for m = 1,

1See Remarks 2, 3 and 4 at the end of §4 for a more specific comparison of the tools used in
our two proofs.
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according to [3], § 5, formula (4)). Given any m, let f be an element of K™ (1) and
let v € T'. We recall that the differential at a point 7 of the automorphism y = (¢ Z)
of §, is given by

dry = Yer +d)dr(er + d) 7L

Since

dr(y-f) =dy.rfodey, (d‘r'Y)_l = d’y-‘r(’Y_l)
and g = - f lies in K™ (7) by the induction hypothesis, we conclude that each of
the components 7 - (§;,f) of dy.~f lies in the field generated over K (™) () by the

d-derivatives of order 1 of all elements g of K (™ (7). But the latter field coincides
with K (™+1 (1), which must therefore be stable under the action of ~.

The remaining assertions in this section are exercises in commutative algebra.
Lemma 2. The polynomial det T € Clrj;, 1 < j <1< g] is irreducible.

Proof (see [5], §30, Exercise 3 for the corresponding assertion on arbitrary matri-
ces). It is sufficient to prove the irreducibility of the polynomial
Tj lfj = l,
Py(71,...,7g) = det 7%, where 75;=¢ 1 ifj=Il+1lorl=j+1,
0 otherwise.

Indeed, such a specialization does not decrease the total degree g of detT. We
prove our claim by induction on g, starting with the polynomials P;(m) = 71 and
Py(71,72) = 7172 — 1, which are clearly irreducible. Expanding det 7* by the last
column (or row), we obtain that

Pg(Tl,... ,Tg) = Tng_l(Tl,... aTg—l) - Pg_Q(Tl,... ,Tg_g).

Assume that P, is reducible. Applying Gauss’ lemma to the ring C[ry, ..., 7,—1][7y],
we deduce from the induction hypothesis that P,_; and P;,_» divide each other.
This is clearly impossible, and the proof is complete.

Corollary. The polynomial det(T —ml,) € C[T] is irreducible for any m € Z. In
particular, the polynomials det(T —m11,) and det(T — mal,) are coprime in C[T]
for any pair m1, mo of distinct integers.

Proof. Setting 7/ = 7 — m1,, we reduce the first assertion to Lemma 2. Then the
second assertion follows from the non-vanishing of det(7 — mql,) at 7 = m11,.

In the next two assertions, we consider the left action of I" on the full vector
space Z, of symmetric matrices (extending the previous action on £),) and the
corresponding right action of I' on the field C(7) of rational functions on Z,/C.
We shall in particular be interested in elements of I' of the form

0 -1 L _ -1
= (3 ot ) €S0 Anlr) = T =~ = m,)
where m denotes any rational integer. For such m we set
Dy, = {1 € Z, : det(T —m1,) = 0}.

By the corollary of Lemma 2, this is an irreducible divisor of the affine space Z,,
and the divisors D,,,, D,,, are distinct for mq # ms.
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Lemma 3. Let P € C[r] be a non-zero homogeneous polynomial and let m € Z.
Set R = vy, - P, that is, R(T) = P(—(7 —m1,)~'). Then R is a non-zero rational
function on Z, whose polar divisor coincides with (deg P) - Dp,.

Proof. We may assume by translation that m = 0, so that

T.
o)== ()
det T /1 ¢ji<q

where (—1)7++1T}; denotes the determinant of the (j,!)-minor of 7. In particular,
T;; = T;; are homogeneous polynomials of degree g — 1 in the ring C[7]|. Then

1 Tj N(T

where N(7) = P(T};) is either 0 or a homogeneous polynomial in C[7] of degree
(g—1)deg P. Since P # 0 by hypothesis, it is clear that R (and hence N) does not
vanish. Consequently, N is a homogeneous polynomial of degree (g — 1)deg P <
deg(det 7)9%€ . Since the divisor Dy = {17 € Z, : detT = 0} is irreducible by
Lemma 2, we conclude that the polar divisor of R in Z, is a positive integral multiple
vDy of Dy. In other words, R = N/D, where D = (det )" for some integer v > 1
and N is prime to D in C[r]. Moreover, v < degP and degN < degD = gv.
This completes the proof in the case when deg P = 1 and reduces the general
case to checking that v = deg P. Note that the case deg P = 1 already implies
that the inverse image v, 1(7—[) of a generic affine hyperplane H C Z, under the
automorphism 7y of Z, is a hypersurface of degree g in Z,. Therefore, the direct
image vo(L) of a generic affine line £ in Z; is a curve of degree g.

Since deg N < deg D, the degree gv of the polar divisor ¥Dy of R can be com-
puted as follows. Let a be a generic point in C and let £ be a generic line in
the affine space Z,. Then the equation R(T) = « in Z, defines an irreducible
and reduced divisor D, of degree gv (with the equation N —aD = 0), and D,
intersects the line £ properly in gv points. Since 7y is a local and global iso-
morphism on Z,, v9(Dy) and (L) meet properly at their intersection points:
Y0(Dgo) Ny (L) = v0(Dy N L), and there are gv such points. But since R =7 - P,
it follows that

Yo(Do) ={7" =7(7): R(T) =a}={7" € Z,: P(T") = a}

is a divisor of degree deg P while vy(L) is a curve of degree g. Furthermore, they
intersect at a finite distance (by genericity) and properly (as we have seen). We
therefore deduce from Bezout’s theorem that vo(Dy) N yo(L) is a set of gdeg P
distinct points. Hence gv = gdeg P and v = deg P, as required.

Corollary. Let t be a positive integer, let Py,..., P, € C[T] be (not necessarily
homogeneous) non-zero polynomials with no constant terms, and let Q be any non-
zero polynomial in C[T]. We put Ry (T) = Pn(—(7 — mly)™"') for each m =
0,...,t. Then the rational functions Ry,...,R; and Q) are linearly independent
over C.

Proof. We first remark that any family of non-zero rational functions on Z, with
pairwise distinct polar divisors is linearly independent over C. Here “pairwise
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distinct” means “either set-theoretically distinct or appearing with distinct mul-
tiplicities”, and the trivial divisor 0 (that is, the empty set) may appear as one
of the divisors. This remark obviously follows from uniqueness of factorization
in C[r]. Considering each non-zero homogeneous part P,,; of degree i (with i €
I, Cc {1,...,degP,,}) of each polynomial P,, (0 < m < t) and using Lemma 3
and the corollary of Lemma 2, we get a family of non-zero rational functions
Ppi(—(7 —m1y)~') which, together with Q(7), admit pairwise distinct polar divi-
sors: iD,, (m =0,...,t, ¢ € I,) and 0. Therefore, this family is linearly indepen-
dent over C, and so are Ry,..., R;, Q.

§ 3. Algebraic proof of Theorem 1

The main tool in this proof is the following result of Ax ([6], Theorem 4), which
is a strong functional version of Schanuel’s conjecture.

Proposition 1 (Ax’s theorem). Let F' O E 2 k O Q be a tower of fields and
let A be a set of deriwvations of F' such that for all 6 € A we have 0E C E and
Nscakerd =k. Let y1,...,Ys,21,-..,2s € F'* be elements such that

(a) 0zp/2p — Oy € E forall6 € A, r=1,...,s, and

(b) mno non-trivial product of powers of z1,...,zs is algebraic over E.

Then
trdegg E(Y1,- -, Ysy 215---,25) = S.

Assume that the functions €', 1 < j < | < g, are algebraically dependent
over M (7). By Lemma 1, this assumption yields that if v € I" is any automorphism
and we put (7;) = 7(7j), then the functions e, 1 < j <1< g, are also

(m

algebraically dependent over M (7). Thus, putting 7("™) = (751 )) = Ym(T), m =

0,1,...,t for arbitrary vg,...,v € I', we obtain the upper estimate

©) o

tr degM(T) M(Ta e’ , € Yo ,ecr(t)) < #{T(m)}m=0,1,...,t - (t + ]-)
=(t+1n—(t+1).

We now apply Proposition 1 with

k = (C, F = M, F = M(T,GCT(O),GCT(I), .. ,GCT(t)), A= {631},
{yr} = {CT;lm)}a and z,=¢e'", r=1,...,s,

s = (t+1)n, assuming that condition (b) is satisfied. Condition (a) of Proposition 1
holds automatically since z,/2, — dy, = 0 for all derivations § € A and all r =
1,...,s; the inclusion 6 E C FE follows from the definition of M. Then, by Ax’s
theorem,

trdegy, M (y1,---,Ysy 215+, 2s) = S, where s = (t+ 1)n.

We now recall that M(yq,...,ys) = M(ct) = M(7) and trdeg,, M(7) is finite
(more precisely, equal to n). Hence we obtain the lower estimate

trdegy, () M(T, ec"(o),ec"(l), . ,ec‘r(t)) = trdegps ) M (Y15, Ys, 21,5+ -+ 5 25)

> s—trdegy M(1) = (t+ 1)n—n,
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which contradicts the previous upper estimate for sufficiently large ¢ (that is, for
t > n).

Thus, it is enough to produce a set vo,71,...,7 € I' = Spy,(Z) such that
condition (b) of Ax’s theorem is satisfied. As in the proof of [2], we shall use

Ym = <1g —m]_g) ESpQg(Z)a m=0,1,...,¢.
As above, we set

0% = (70) = (1) = —(7 — m1,) !

(that is, T;lm) = Ym - Tj; in the notation of §2) and suppose that condition (b) of
Proposition 1 does not hold for the corresponding choice of {y,} and {z, = e¥r}.
Then there is a non-trivial family {C'J(Zn)} € Z" such that the rational function

Rty = Y OMer

1<<Isy
1<m<t

satisfies
eR(‘r) c Malg’

where M2 denotes the algebraic closure of M. Taking logarithmic derivatives, we
deduce from the differential stability of M (and hence of M#8) that

OR
a—(’r)EMalg forall 1<5<I<g.
T4l

But M8 and C(7) are linearly disjoint over C since M and C(7) are linearly
disjoint over C (see §1, formula (2)) and since C(7) is a purely transcendental
extension of C. The relations obtained imply that

OR

ale(T)E(C forall 1<j<I<g.

Consequently, there is a polynomial @ (of degree at most 1) such that
R =Q e (1]

We now consider ¢ polynomials

(m) _
E le CTjl, m=20,1,...,t.
1<I<Isy

For each m, the image R,, = vm - Pn of P, under the action of v, € I' is the
rational function

Rm(T):Pm( (T —mly)~ Z (m) , m=0,1,...,t,
1<i<Isyg
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since the action of I' on C(7) is C-linear. Therefore, R = >y ,,<; Rm, and we
finally get the relation
> Ra-0

o<mKt

The polynomial Q may vanish identically. But since the family {C'J(.;n)c} e Cc
is non-trivial, some of the polynomials P, (m = 0,...,t) are non-zero. These
polynomials are linear forms and, in particular, have no constant terms. Therefore,
the last relation contradicts the corollary of Lemma 3. This completes the proof
of Theorem 1.

§4. Analytic proof of Theorem 2

4.1. A new proof of Theorem 1 in the case when g = 1. In this case,
we can dispense with the differential algebra. We recall that the field M has
finite transcendence degree over C and assume that the function e is algebraic
over M(7), contrary to Theorem 1. According to Lemma 1, M(7) is stable under
the action of I' = Spy(Z) = SLy(Z). Therefore, e?(7) is also algebraic over M (7)
for any v € I'. We claim that

the functions e¥\") with v running through T generate (over C) a field of infinite
transcendence degree over C.

Hence, they cannot be all algebraic over the field M (7), whose transcendence
degree over C is finite.

Proof of the claim (g = 1). The crux here is that €™ is holomorphic on the whole 7-
plane, not just on the upper-half plane $);. Thus, taking 7 of the form ~,,, = ( (1) __;L ),
where m = 0,1,2,..., we obtain (for each m) a function e®¥m(7) = e=¢/(r—m)
which is holomorphic on C except at the point 7 = m, where it has an essential
singularity. But any such function f is transcendental over the field of functions
which are meromorphic in a neighbourhood of m (apply the Weierstrass—Sokhotsky
theorem on the density of the image of any punctured neighbourhood of m under f).
Hence, for each positive integer ¢, the function e®7¢(7) is transcendental over the field
generated over C by the previous functions e (") m = 0,1,...,t—1, and the claim
follows by induction on t.

4.2. Proof of Theorem 2. Instead of Ax’s theorem of § 3, we shall use a simpler
differential-algebraic result of Kolchin (see [7], Ch. VI, §5, Exercise 4(b)). This
multiplicative analogue of Ostrowski’s theorem follows from the fact that any proper
algebraic subgroup of a group of multiplicative type is contained in the kernel of a
non-trivial character.

Proposition 2 (Kolchin’s theorem). Let ' 2 E D k D Q be a tower of fields,
and let A be a set of derivations of F such that 6E C E for all 6 € A and
Nscakerd = k. Let z1,..., 25 be elements of F'* which are algebraically dependent
over E. Suppose that 6z./z, € E for all§ € A and r = 1,...,s. Then there are
numbers ny,...,ns € Z, not all equal to 0, such that 27* --- 20 € E*.

We now assume that all hypotheses of Theorem 2 hold, but the functions
eQ1(T) . e9N(T) are algebraically dependent over M (1) contrary to the conclu-
sion. Applying Proposition 2 to the §-differential field E = M(7) and the functions
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zr = €9 (T) (r=1,...,s with s := N), we deduce that there is a non-trivial famil
y
{c1,...,cn} € ZY such that the polynomial

P(r)= ) cQu(7)

1<r<N

satisfies
e e M(7).

Since the polynomials ), are linearly independent over Q and have no constant
terms, P is a non-zero polynomial with no constant term. By Lemma 1, it follows
that the function eV P)(7) = POV (7)) lies in M(7) for any v € I

We now consider the elements of I' of the form

— Og _1g _
me_(]-g m]_g)ESPQQ(Z)a m=0,1,... .

We claim that

the functions e ¥ m = 0,...,t, are algebraically independent over C for any

positive integer t.

Consequently, if ¢ is sufficiently large (more precisely, if ¢ > % 9(5g+3) according
to §1, formula (2)), then not all these functions can lie in the field M (7), which
has finite transcendence degree over C. This contradiction will complete the proof
of Theorem 2.

Proof of the claim (g > 1). Writing the polynomial P as the sum of its non-zero
homogeneous parts of degree > 1, we deduce from Lemma 3 and the factoriality
of C[] that the polar divisor in Z; of the rational function

Ry (T) = Ym - P(1) = P(—(7 —m1,)™"), m=0,1,...,t,

is set-theoretically equal to the divisor D,,,. We now fix a point 7/ € D, that does not
belong to any of the polar divisors of the functions R,,, = v, - P, m =0,1,...,t—1,
(this is possible by the corollary of Lemma 2), nor to the zero divisor of R; (that
is, to the set of points of indeterminacy of R;), nor to the singular locus of D;.
Then the functions efm(™) m = 0,1,...,t — 1, lie in the field M, of germs of
meromorphic functions at 7/, and it remains to prove that f = ef* cannot satisfy
a non-trivial algebraic equation S(f) = 0 over M.

Consider an analytic curve C' C Z,(C) such that C intersects D; transversally
at 7/ and the germ of C at 7’ is not contained in any of the zero or polar divisors
of the coefficients of S. Let

p:{z€C:|z| <1} =»C,  ¢0) =7,

be a parametrization of C. By the transversality and the non-indeterminacy of R;
at 7/, the one-variable function f o ¢(z) has an essential singularity at 0 while the
pullbacks of the coefficients of S under ¢ are the germs at 0 of well-defined non-
zero meromorphic functions of z. As mentioned in §4.1, the resulting algebraic
dependence relation for f o ¢ is absurd, and our claim follows.
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Remark 2. Applying Proposition 2 twice, we can easily transform the arguments of
this section into a purely algebraic proof of Theorem 2. Indeed, analysis occurred
only in the proof of the claim. But if the claim does not hold, we can apply
Kolchin’s theorem again (this time with £ = C(7)) and use the non-exactness
of non-zero logarithmic differentials on the affine space Z, to conclude that the
rational functions R,,(7), m = 0,1,...,t, are linearly dependent over Z modulo C.
This contradicts the corollary of Lemma 3 applied to Py = --- = P; := P and
Q=1

Remark 3. In a similar vein, the deduction of Theorem 1 from Ax’s theorem in
§3 used the corollary of Lemma 3 only when P, ..., P; are linear forms. (This
case admits a much simpler proof, which requires Lemma 2 only.) We leave it
to the reader to verify that the arguments of §3 can be transformed into a proof
of Theorem 2 if we apply this corollary in its full generality. (Throughout §3,

replace the n linear forms 7;; by the N polynomials @), of Theorem 2 and replace
T;Im) = Ym - Tji by Ym - Qr.)

Remark 4. The most significant difference between the proofs in §§ 3, 4 is that they
use different arguments from [3|: in §3 we merely need to know that M(7) is a
purely transcendental extension of M, while the arguments of §4 rely solely on
the finiteness of the transcendence degree of M over C. (Of course, the stability
of M(7) under I' is the main argument in both cases.)

8§ 5. Thetanulls and their logarithmic derivatives

Setting
q;1 :eQﬂ-ilea 1<.7 <l<ga and ij:eﬂ—iTjja 1<]<ga

we now turn to modular forms and consider the thetanulls,

9, = ﬁ(a’,a”)(‘]) _ Z e-n-z't(n—l—a’/Q)a” H q;?j+a;/2)(nl+a;/2)7
nezs 1<5<I<g
attached to even 2-characteristics a = (a’,a”) € & C (Z/27)?9, that is, charac-
teristics with ‘a’-@” = 0 (mod 2). These series converge in a non-trivial domain of
g-space, where g = {gj;, 1 < j <1< g} € C*, but we shall regard them as formal
elements in the ring
Sq="Cllg", 4v € Z,(Z), v > 0]).

(To recover the standard Fourier expansions, put g¢¥ = e'” Tr("”.)

The set of partial derivations § is now transformed into

0 )
53'1:le@, 1<j<Il<g,

which makes ¥, into a differential ring. We define the logarithmic derivatives of
thetanulls by
0104

d)a,gl — 190, )

ach, 1<j<i<y
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Since

da=1+ > (1" [ ™ if o' =0 (3)

0#neZ? 1<j<I<g

the n logarithmic derivatives of the corresponding 29 functions

00 ™m
¢a’pq _ Z (—1)t"a”npnq H q?ljm . Z (_ Z (_1)t'na.” H q;bljm)

0#£n€Z9 1<5<I<yg m=0 \ 0#£n€z9 1<i<I<yg

(1 < p<q<g) liein F4, while the logarithmic derivatives of the other thetanulls
(a’ # 0) belong to the field of fractions of Fg.

According to [3], §5, the field of fractions of the ring

Qg = Qa,Va jilaca,1<i<i<y

is d-stable, and its algebraic closure coincides with that of M. Therefore Theorem 1
yields the following theorem.

Theorem 3. The field of fractions of the ring
Iy = Qlgj1,9a;s Va,jilack, 1<i<i<y

is stable under the derivations &, and has transcendence degree %9(59 + 3) over Q.

In the classical case g = 1, as well as in the case g = 2, the ring @, is stable
under the derivations & (see [3], §6). Hence the rings II; and Il have the same
property. Furthermore, if g = 1, then the product formulae for the thetanulls 9,
(see, for example, [8], §21.42) provide explicit expressions for the g-expansions of
their logarithmic derivatives 1¢,. Recent results of Borcherds show that there is
some analogy between the classical case and the case g = 2 in this respect too.
We conclude this paper by explaining how Borcherds’ formulae provide the explicit
g-expansions of the 10 elements which form (according to [3], Theorem 3 (iv)) a
transcendence basis of Q)2 over Q and hence (by Theorem 3) also of 115 over Q[q].

We henceforth assume that g = 2. For simplicity, we use (as in [3], §6) the map
(Z/2Z)? — {0,1,2,3} with
(0,0) —»0, (0,1)—1, (L,0)—2, (1,1)—3

to represent a characteristic a = (a’,a") € (Z/27)? x (Z/27Z)? by only two digits.
Then R, = {00,01,02,03,10,12,20,21,30,33}. We relabel the entries of g by
setting ¢1 = q11, @2 = @22, g3 = q12 and do the same for the derivations

0 .
6.7:(1]@7 ]:17273a
J

and the logarithmic derivatives 14 ;. In this notation, the transcendence basis
for Q2 mentioned above is given by the list

Y00, Vo1, Vo2, 00,1, V01,1, Y02,1, Y002, Yo1,2,%Y02,2, Y00,3- (4)

Finally, we denote by Z; the space of positive semi-definite symmetric matrices

v = (Z; Zz) with entries vy,v9,2v3 € Z, for which we again set ¢¥ = ¢} g52g5°.

Then we have the following proposition (see [9], §4).
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Proposition 3 (Borcherds’ product formula). The following identity holds:

a2 o 1—g” f(detv)
1903(Q) — Z (_1)n1+n2q11q22qg1n2 — H (1 ) , (5)

) 74
nl,n2€Z 02#V€Z; + q
where
oo , —1
Z f(m)g™ = (Z(—l)”q” ) =1+ 2q +4¢ +8¢° + 14¢* + 24¢° + - --
m=0 neZ

is the reciprocal of the one-variable thetanull ¥91(q).

Substituting ¢; — —q; and g2 — —¢o in (5) and (3), we derive the product
formulae for the other three thetanulls with a’ = 0:

B 1— (_1)1/1ql/ f(detv) B 1— (_1)y2qy f(detv)
1901 - H (1 + (—1)”1(1”) ) 1902 - H 1 _|_ (_1)U2qy )

02¢V€Z;— OZ#VEZ;
1— (_1)u1+1/2qu f(detv) (6)
Yoo = H <1+ (_1)V1+V2qu) :

0:#4vEZS

Explicit formulae for the g-expansions of the logarithmic derivatives of these
thetanulls follow from (5), (6) in the obvious way. For instance, if a” = 3 and
j=1,2,3, then we get

¢03,j =

0j%s _ 3 v f(detv)g”

9 1—q?
03 0spvezt q

= -2 Z q”( Z l/jf(detu)).

Og;éll,EZ;_ uEZ;':(2m+1)u:p,
meZ,m>=0

Combining (3) and (6), we similarly get the promised g-expansions of all the ele-
ments listed in (4).

Remark 5. In genus 2, product expansions also exist for thetanulls other than the
four studied above. We mention for instance 933 (see [10], Example 2.3, where this
thetanull is dubbed “most odd”). See also Example 2.4 of [10] for the product

expansion of the modular form of weight 5 given by [], Ay Ya-
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