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Cancellation of factorials

V. V. Zudilin

Abstract. An arithmetical property allowing an improvement of some number-
theoretic estimates is studied. Previous results were mostly qualitative. Applica-
tion of quantitative results of the paper to the class of generalized hypergeometric
G-functions extends the set of irrational numbers representable as values of these
functions.

Bibliography: 20 titles.

1. Introduction. The term used in the title is of recent origin, although some
effects of the phenomenon of ‘cancellation of factorials’ are already classical and
included in lists of problems for students.

Example 1. The operator D = d/dz of differentiation with respect to the vari-
able z takes the ring Z[z] of polynomials with integer coefficients into itself; hence
the operators D™, n = 0,1,2,..., also have this property. It is easy to show (see,
for instance, [1], Chapter 4, Lemma 7) that the operators D™ /n! also take Z[z] into
itself: .
Lpn_ 1"

n

- —n!dzn:Z[z]%Z[z], n=0,1,2,....

Example 2. The sequence of polynomials
(Mo =1, MNpn=2A-1)---A=n+1), n=12,..., (1)

lies in the ring Z[\]; hence the polynomials (1) take integer values for integer A. In
fact, this property is exhibited already by the polynomials

(A)n
n!

(see, for instance, [2], Part 8, Chapter 2, Problem 84), which for n > 2 do not
belong to Z[A]. The polynomials (2) are said to be integralvalued.

An(A) =

., n=0,12,... (2)

Let K be a field that is an algebraic extension of the field Q of rationals and
Zx its ring of integers. In place of Z[z] in Example 1 we can consider the ring Zy[z]:

1 d"

E@IZK[Z]—)ZK[Z], n=20,1,2,....
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Definition 1. An operator D: K[z] — K|z] is said to have the property of the
cancellation of factorials with constant ¥ > 1 if there exists a sequence of positive
integers {9k }xen such that

n

D -
Ye—: Zx|z] = Zxlz], n=0,1,....k, k€N,  and lim ¥/ < 0.

Thus, we have the following result.

Lemma 1. For each algebraic extension K of Q the operator d/dz: K|z] — K|z]
has the property of the cancellation of factorials with constant 1.

Taking in Example 2 X = a/b € Q with coprime a € Z and b € N we see that
the common denominator of the quantities

is Hp|b p™ () (see [1], Chapter 1, Lemma 8, or [3], Chapter I, Appendix), where
k k k k
w6 =[]+ |+ )+ <55 “

is the power of the prime p in the factorization of k!; here and throughout, | - |
denotes the integer part of a number. Thus, the common denominator of the
quantities in (3) has the estimate e¥X(®) where

logp
x()=) —=,  beN (5)
p—1
plb
that is, has a geometric order of growth as £ — oo.

Of course, for the domain of the polynomials (1) we can take an algebraic exten-
sion K of the field Q (or even the ring of square matrices with entries in K, see §4
below). From the outset we define the denominator den A of A € K as the least
positive integer b such that b\ € Zk.

Definition 2. We say that an element X\ of the field K has the property of the
cancellation of factorials with constant ¥ > 1 if there exists a sequence of positive
integers {9k }xen such that

¢k<A>"€ZK, n=0,1,...,k k€N, and m@b;/’“gxp,

where the symbol (- ),, is defined in (1).

We summarize our comments relating to Example 2 in the following statement.
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Lemma 2. A rational number \ has the property of the cancellation of factorials
with constant beX®)  where b = den A and the function x(-) is defined in (5).

Remark. 1t is essential in Lemma 2 that A be rational. By considering a field
K = Q(A) of finite degree s = [K : Q] > 2 and setting in the main lemma of [4]
ap=-A—-1,b0=0,m=m; =1, my=0,7=1—1/3, and ¢ = 1/6 we obtain
the following result: for each sequence of positive integers {1y }ren such that

An
¢k<n>' EZKa n:0717"'7k7 keN?

the inequality
Y > CET=o7k > OR2R/3 e, (6)

holds with positive constant C' depending only on A. The estimate (6) means that for
irrational A the growth of common denominators of the sequence (2) as k — oo is at
least factorial and a discussion of the cancellation of factorials would be pointless.

2. History of the problem. The examples of §1 can be considered classical.
In fact, the concept of cancellation of factorials appeared for the first time in
a paper by Galochkin [5], in connection with the cancellation of coefficients of
linear approximating forms (Padé approximants) for so-called G-functions in the
Siegel-Shidlovskii method. Allusions to this phenomenon can be found in Siegel’s
paper [6], which is in effect the origin of this method. All authors who applied
the Siegel-Shidlovskii method to G-functions before [5] obtained estimates of linear
forms and of polynomials in the values of these functions at rational points whose
absolute values depended on the height of the forms under consideration (see, for
instance, [7]). And it was the use of the cancellation of factorials that enabled one
to obtain, for a subclass of G-functions, estimates of the moduli of polynomials in
the values of these functions at points of absolute value independent of the height
of the polynomial. A statement of a theorem on an effective estimate of a linear
form of G-functions from some subclass appeared in [5]; its proof was published
in [8]. In [9] the authors calculate a constant of the cancellation of factorials for the
Gauss hypergeometric function, which made it possible to obtain several results on
the irrationality and the linear independence of the values of this function and its
derivative. Finally, in 1985 D. and G. Chudnovsky proved [10] that the condition
for the cancellation of factorials formulated in [5] is fulfilled by the homogeneous
systems of linear differential equations which hold for the G-functions. In [3],
Chapter VI, §4, an easy generalization of the Chudnovskys’ construction allowed
the author to extend this property to inhomogeneous systems of linear differential
equations.

Despite the affirmative solution of the problem of the cancellation of factorials
for G-functions, the known values of the corresponding constant are rather crude.
This is because the Chudnovskys’ approach uses implicit constructions based on
the Dirichlet principle. In the present paper we give a new solution of the same
problem for the generalized hypergeometric G-functions, the possibility of which
was conjectured in [11], §12. Our proof is based on explicit constructions and
therefore produces a better estimate of the constant of the cancellation of factorials.
Number theoretic applications of this result extend the set of irrational numbers
representable as values of hypergeometric G-functions.
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We now define a class of G-functions having a Taylor expansion with rational
coefficients in a neighbourhood of the origin. We say that a family of functions

o0
2)=Y find j=1,...om, fin€Q j=1...,m n=01,..., (7)
n=0

belongs to the class G(C, ®) if the functions (7) are analytic in the disc |z| < C and
there exists a sequence of positive integers {x }xen such that

SokfanZ, j:1,...7m, n:0717"'7ka kEN, and msOl/k\‘I)

k—o00

We now formulate the property of the cancellation of factorials for systems of
linear differential equations

:QIO+ZQljyja lzla"'ama
=1 (8)

Qlj:Qlj(z)EQ(z)a l:]w"'ama j:O,...,m,

which hold for the G-functions (7).
Let T(z) € Q[z] be the denominator of the rational functions @;; with leading
coefficient 1:

T(z)Qij(z) € Q] l=1,....m, j=0,...,m. 9)

It follows from (8) that for the derivatives of order n, n =1,2,..., we have

dar [n]

U =Q + QMy;, I=1,...,m,

dz Z ’ (10)
QE?]zQEj(z)eQ(z), I=1.....m, j=0....m.

Easy calculations demonstrate the following recurrence relations:

n d n— n—
Q') = @ +ZQ[ 1(2)Qry (=) o

l=1,....m, j—O,l,..., m, n=12,...;

therefore

Tn(z)Ql[?](z) = T(z)E(Tn—l(z)QE;l—l](z)) _ (n _ 1)T/(Z) . Tn—l( ) [n 1] (Z)
ZT" (2@ @) T(2)@Qn (2),

Hence, in particular,

T"()Q () €Qlzl, l=1,...,m, j=0,...,m, n=12....



Cancellation of factorials 1185

Definition 3. A system of linear differential equations (8) is said to have the
property of the cancellation of factorials with constant W > 1 if there exist positive
integers {9 }xen such that

T (2)Q17 (=)

n!

Vg €Zlz], I=1,....m, j=0,....m, n=0,1,....k, keN

lim 4,/" < .

k—o0

This property of the cancellation of factorials for a system (8) is known to hold,
generally speaking, only if there exists a family of G-functions linearly independent
over C(z) and solving this system. Such systems lie in the class of systems of
differential equations of Fuchs type. Up to a meromorphic transformation of the
solution space the coefficient matrix Q(z) = (Qy; (z))l y of a Fuchs-type system (8)
has the following form: 7

1 1

Q(z): A+ -+
2= Z—=s

As, (12)

where 71, ...,7s are the regular singularities of the system (8) and A;,..., A, are
constant matrices (see [12], the remark to §2.4). In the case (12) the denominator
of the corresponding system (8) is T'(z) = (z — 1) - - (z — 7s)-

3. Cancellation of factorials for differential operators. In this section we
study a generalization of the operator of differentiation d/dz that also has the
property of the cancellation of factorials.
Let K be an algebraic extension of the field Q and let
d A
D=—+~, AeQ. 13

o+ Q (13)
The operator T'(z)D, where T(z) = z, takes the ring K[z] into itself, whereas D
on its own takes K[z] into K(z). For this reason we extend slightly the domain of
application of Definition 1.

Definition 1’. By the denominator of an arbitrary (not necessarily linear) differen-
tial operator D: K(z) — K(z) we shall mean the non-trivial polynomial T'(z) € K|z]
of lowest degree with leading coefficient 1 such that T'(z)D: K[z] — K[z]. We say
that the operator D has the property of the cancellation of factorials with constant
U > 1 if there exists a sequence of positive integers {1 }ren such that

T"(2)D™
n!

Wi : Zxle] = Zx[z], n=0,1,....k, k€N, and kM¢;/k<qf.
— 00

Lemma 3. The following identities hold for the differential operator (13):

pr = i (7) K ! neN, (14)

2t dzn=t’
1=0

where the symbol (-); is defined in (1).
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Proof. For n = 1 formula (14) coincides with the definition (13) of the operator D.
Assuming that (14) holds for some positive integer n, we obtain

Ay drt XS (n) (A drt
Dn+1 n <_ — —_
( > (l) zb dzn—t * z; 1) 2t dzn—t
pdr L i\ ) dr T S\ A (A dr
Zl dzn—1+1 _Z<l> L1 gym—l +Z<l> S+1 Jyn—l
1=0 1=0
A>l qnti-t n (n) <)\>l-|-1 dn—1
_|_
1=0

~ 3
— ——
)
‘»

zl+1 dZ"_l

n) A) drti-t "+1< n )@ qnti-1
=1 ;

—~ 1) 2zt dznt1i-t —1) 2t dzntl-l
B n+l n+1 <)\>l dn—l—l—l
- I ) 2 denti-tr

1=0

Thus, (14) holds also for n+ 1. By the principle of mathematical induction it holds
for all positive integers n. The proof is complete.

Using the definition of binomial coefficients, from Lemma 3 we deduce the iden-
tity

D" o A 1 dn—t
n :Zzn—l-<>l_

o Digm e

Applying now the results on the cancellation of factorials for the operator d/dz
(Lemma 1) and the rational number A (Lemma 2) we obtain the following statement.

Theorem 1. The differential operator (13) has the property of the cancellation of
factorials with constant beX®  where b = den A and the function x(-) is defined
by (5).

Lemma 3 is easily extended to the case of the differential operator

d A A
D= _— 4+ 4. ..4 , AMyeeos AssY1seeesys € Q (15)
dz  z—m Z— s

with denominator T'(2) = (2 — v1)---(2 — 7vs). We indicate the corresponding
identities without proofs.

Lemma 4. The following identities hold for the differential operator (15):

| no
D" = Z n. <)\1>n1 o <)\5>ns d ’ neN. (16)
NnNQ N1 ,y...4M >0 no!nl!...ns! (Z_Vl)nl (Z_’Ys)ns dZ”O
notn1 - tna=n
By Lemma 4,
T (z)D™ B ~
(ni!): > (z—y)" ™ (2 =)

nOanla"'vnSZO
no+ni+-+ns=n \ N d
no
1 1
% < >n1 .. < 3>ns . , n e N,
n1! ng! ng! dzmo
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and therefore the differential operator (15) also has the property of the cancellation
of factorials.

Theorem 2. The differential operator (15) has the property of the cancellation
of factorials with constant gbeX®), where q is the product of the denominators of

the numbers v1,...,7vs, b = den(Aq,...,As) is the least common denominator of
A1y ..oy As, and the function x(-) is defined by (5).

4. Cancellation of factorials for square matrices. A constant square number
matrix A of order m can be substituted in an arbitrary polynomial; in particular,

(AYy=E, (Ap=A(A-E)---(A—(n—-1)E), n=12,...,

where F is the identity matrix of order m. If all the entries of A belong to an
algebraic extension K of QQ, then the following definition looks very natural.

Definition 2. A matriz A with entries in K has the property of the cancellation
of factorials with constant ¥ > 1 if there exist positive integers {¢y }ren such that
the matrices

(A)n

1,bk T n:O,l,...,k, kEN,
n.

have entries in Zg and
lim 4,/" < .

k—o0

Lemma 5. Let A be a matrixz with the property of the cancellation of factorials
with constant ¥. Then the matriz TAT ™', where T is an arbitrary non-singular
matriz with algebraic entries, has the same property.

Proof. This can be established on the basis of the elementary identity
(TAT Y = TAT*, n=0,1,2,...,

which shows, in particular, that

—1
(TAT )n _ T<A>"T_1, n=0,1,2,....

n! n!
If t, and t, are the least common denominators of the entries of T and T}, respec-
tively, and {9 }xen is the sequence in Definition 2’ corresponding to the matrix A,
then for the sequence corresponding to TAT ~! we can take {t1t29k } ken. It remains
to observe that

Tim 1/k Tim 1/k:.
klm (t1tatr) = klm Py
The proof is Complete.

It follows from Lemma 5 that it suffices to establish cancellation of factorials and
calculate the corresponding constant for matrices in Jordan normal form.
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Lemma 6. Let A be a matrixz formed from Jordan blocks A4,...,As at the main
diagonal corresponding to (not necessarily distinct) eigenvalues A1, ..., \s, respec-
tively. Then the matriz A,,(A) = (A),/n! contains only blocks A, (A1), ..., Ap(As)
that lie at the main diagonal and have the following form:

Aa(y) HAPOG) AP () AP 0y)

0 A, AP0 EAD0y) L
An(A) =1 0 An(n)  LAP0g |
0 0 0 An(Xj)
l=1,...,s

Proof. This is a well-known result. Moreover, it remains valid after the replace-
ment of the polynomial A, (-) by an arbitrary analytic function in a disc |z| < C
containing the eigenvalues A1, ..., \s (see, for instance, [13], Chapter 5, § 1, Exam-
ple 2).

Remark 1. As follows from Lemma 6, the main diagonal of the matrix A, (A) con-
tains the quantities A, (A1), ..., A, (As); in accordance with the remark to Lemma 2
a discussion of the cancellation of factorials for the matrix A makes sense only for
rational Ap,..., A;. Hence we content ourselves in what follows with rational square
matrices that have rational entries and rational eigenvalues. By the denominator
den A of a rational matrix A we shall mean the least common denominator of its
eigenvalues. At the same time the entries of the matrix bA are not necessarily
integers; one example is the matrix

(12 112

with denominator 1 (its eigenvalues are 0 and 1).

Remark 2. For each eigenvalue ); of a rational matrix A we consider the posi-
tive integer r; that is the maximum order of a Jordan block corresponding to the
eigenvalue \; in the normal form of A. We point out that

A=A A=) - (A= X)™, N < A, J#I (17)

is called the minimal polynomial of A; it divides each polynomial P(\) such that
P(A) = 0. In particular, by the Cayley—Hamilton theorem the minimal polynomial
divides the characteristic polynomial det(A — AE) of A. In addition, if 'A is the
transpose of A, then the minimal (and the characteristic) polynomials of ‘A and A
are the same.

Lemma 7. Let A € Q, let b=den X € N, and let r € N. Then the least common
denominator Y, k € N, of the quantities

AG)
ﬂQ% j=01,....r—1, n=0,1,...,k,
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divides
bkdz_l Hpr(k),
plb
where dy, is the least common multiple of 1,2, ...,k and 7,(k) is the power of the

prime p in the factorization of k! (see (4)).
Proof. Setting in the theorem in [14] L=H =k, Q =b,z = —b\, M =r—1, and

A =1 we arrive at the required result.

One immediate consequence of Lemma, 7 is as follows.

Lemma 8. For \1,...,As € Q let b=den(Aq, ..., As) be their least common denom-
inator, letry,...,rs€N, and let r = max;{r;}. Then the least common denominator
Y, k € N, of the quantities

AD ()
n—'( l), j=0,1,....,m—1, I=1,...,5, n=0,1,...,k,
7!
divides
o [ [ ™,
plb
where dy, is the least common multiple of 1,2,...,k and Tp(k) s the power of the

prime p in k!.
Combining Lemmas 5, 6, and 8 we obtain the following result.

Lemma 9. Let (17) be the minimal polynomial of a rational matriz A; let b= den A;
let 1 = maxy{r}; and let t1 and ty be the least common denominators of the entries
of the matrices T and T~', respectively, where T is the matriz of the transition
from A to its Jordan normal form. Then the least common denominator Yy, k € N,
of the entries of the matrices

A (A), n=0,1,...,k,

divides
plb
where dy, is the least common multiple of 1,2, ...,k and 7,(k) is the power of the
prime p in k!.
Taking account of the limit relations
I 1/k
Iim dY* = li (k) — ex(®) 1
Jm d " =e, lim (Hp <, as)
P

and Remark 2 to Lemma 6 we arrive at the following final result.
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Theorem 3. Let
PA)=A=XA)""A=X)™ - (A=2s)", A1,..., A €Q, A #F N, JFL (19)

be a polynomial annihilating a matrix A (for example, P(\) can be its minimal or
its characteristic polynomial); let b be the least common denominator of A1,..., As
(the denominator of A); and let 1 = maxy{r;} be the mazximum multiplicity of the
roots of the polynomial (19). Then the matriz A has the property of the cancella-
tion of factorials with constant beX®)+T=1 where the function Xx(-) is defined by
formula (5).

5. Cancellation of factorials for systems of differential equations of Fuchs
type. We now return to the question discussed in § 2.

Consider a system (8) of linear differential equations of Fuchs type and the
corresponding systems (10) for the derivatives of orders n = 1,2,...; we select the
polynomial T'(z) = (2 — 1) --- (2 — 7s) in accordance with (9). We complete the
matrices of inhomogeneous systems to square matrices by adding lines of zeros:

0 0 0
QlO(Z) Qll(z) le(z)

Q(Z): Q20(z) Q21(2’) Q2m(z) ) (20)
Qo) Qui(2) . Qum()

0 0 0
Qi) QMl(z) Qb (2)
QM=) = | Qh(x) Q%) bz |+ m=12...,
Qr Q) ... Qi)

and write the recurrence relations (11) in matrix form:

QM) = 2P QPR =12

so that
QM) = L) + Q) = (4 + 0 ) e
— d t " —
= (%—I_Q(Z)) E, n=12..., (21)

where F is the identity matrix of dimension m + 1.
Using the expansion (12) we introduce the differential operator

d 1
pod Uyt (22)
dz = z—m Z—="s
where Aq,..., As are rational matrices. We now define the cancellation of facto-

rials for the operator (22) by replacing the ring Zx[z] by (Zg[z])™+D*(m+1) in
Definition 1’.
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Lemma 10. If the operator (22) has the property of the cancellation of factorials
with constant U, then the system of differential equations (8) also has the property
of the cancellation of factorials with constant V.

Proof. In view of relations (21) we have
QM(z)=D"E, n=1,2.... (23)

If {4 }ren is the sequence from the definition of the cancellation of factorials cor-
responding to the operator D, then it follows from (23) that the matrices

T (2)'Q™ (2)

n!

7,bk , n:O,l,...,k, kEN,

have integer entries. This yields the required result.

Unfortunately, Lemma 4 cannot be applied to the differential operator (22) in
the case of arbitrary matrices Aq,..., As: the identities

T (z)D™ Z

— )n—n1
n!

n—m
(z =)™ ez )™
no,n1,...,Ns 20
no+ni+-+ns=n

<tA1>n1 <tAS>n 1 dm
S 24
% ni! ns!  noldzm’ neN (24)
hold only for commuting Aq,..., As.
Taking account of (24), Lemma 9, and the estimates (18) we obtain the following
result.

Theorem 4. Let s =1 or, fors > 2, let Aq,...,As be pairwise commuting matri-
ces; let A\i,...,A\p € Q be the eigenvalues of the rational matrices Aq,...,As; let
b=den(Ai,...,Ap); and letrj; >0, j=1,...,p, 1 =1,...,s, be the multiplicity of
the eigenvalue \; in the minimal polynomial of the matriz Ay; let r = max; {r;} be
the maximum multiplicity of the eigenvalues. Then the operator (22) has the prop-
erty of the cancellation of factorials with constant beX®)T7=1 where the function

x(+) is defined by (5).
In accordance with Lemma 10, Theorem 4 yields the following result.

Theorem 5. Assume that the matriz (20) of a system of differential equations (8)
has the form (12) with commuting rational matrices Ai,..., As. Let b be the least
common denominator of the eigenvalues of the matrices Ay, ..., As, and r the maz-
imum multiplicity of these eigenvalues in the minimal polynomials of these rational
matrices. Then the system (8) has the property of the cancellation of factorials with
constant bex(®)+r—1,

Remark. In the case of rational, but not commuting matrices Ay, ..., As the ques-
tion of the constant of the cancellation of factorials for the differential operator (22)
is still open. For a generalization of identities (16) to the operator

D

d Ay A,

-4 2
dz = z—m Z—="s (2)
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we define matrices (A1,..., As)n, N = (n1,...,ns), by induction, setting

(A1, A2, ... A ny mo,.m,

(0 ifng (Z)",

E ifn=0,

={ (A1 —ni+1){A1,As o, As)n— 1m0, ms

+ (A —na+1)(A1, As, ..., As)ny no—1,0m, +

+ (As —ns + 1){A1, A2, .. . Ay ms,oma—1 i m € (Z4)°.

\

If the matrices Ay, ..., As commute, then
(Arreos Aoy, = P EI yya)
1y---54s/ng,...,n, n1|ns| 1/n1 s/ngy (26)
n=(ny,...,ns) € (Zy)*.
Using induction on k it is easy to prove the identities
(At 4+ A= > (A1,..., A,  k=0,1,2,...,
ne(Z4)°
|n|=k
where |n| =n; + -+ ng, and
k
k Aq,..., A d
Dk:Z(l>( Z < ]:rzl : s>n TI’)F’ k:0;1727-.-7
1=0 nE(Z+)s (Z_’Y]-) (Z_’YS) z
In|=k—1
for the differential operator (25). In particular,
Aq, ... A
DFE= > < 1n » As)n —,  k=0,1,2,.... (27)
nE(Z )s (Z_’Y]-) ...(Z_’YS)
|n|=k

6. Application to generalized hypergeometric functions. A generalized
hypergeometric function

B Q1,5 O w (ma)amem)a o,
f(z)_F<51+1,...,5m+1‘z> _7;)<—,81—1)n---<—ﬂm—1)nz - (28)

ﬂl,“"ﬁm ¢ {_17_27"'}5
satisfies the linear differential equations ([15], Chapter 5, § 1, Lemma 1 with ¢t = 1)

(G4 B1) (54 Bu) =20+ a1) - (54 o))y = fr -~ oy 6= 2

dz

of order m.
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For the functions

[i(z) = f(2), fa(2) =6f1(2), ..., [m(2) =0fm-1(2) (29)
we obtain the system of linear differential equations

d 1
L == I=1,...,m—1
dzyl Zyl+17 ; ;M ;

d 01(B) — zo1 () 02(B) — zo3(ax)

dz0m = z(z—1) Ym + z2(z—1) Ym-1t (30)
O-’ITL - ZO'm (8] m
L nlB) = zom(@)  o(B)
z(z—1) z(z—1)
where oy(-),l = 1,...,m, are the Viete symmetric polynomials of degree [, that is,

(z4+a1)(z+a) - (z+am) =2"+01(@)z™ 4+ -+ o1 (@)z + op(a),
(z+B1)(z+ B2) - (z+ Bm) = 2" +01(B)2™ " + -+ om_1(B)z + om(B)-

(31)
Taking account of the equality
o1(B) — zoi(a) _ ou(B) —ou(a)  ou(B) =1 m
z(z—1) z—1 z R
111
2(z—1) z—-1 =z
we can write the system (30) in the matrix form:
Y1 0 0
d| ¥ 0 1 0
— .. = — .. +
dz Y1 z 0 z—1 0
Ym o'm(ﬁ) _O'm(ﬂ)
0 0 1 0 Y2
e RS
* 0 0 0 1 Ym—1
—om(B) —om-1(B) —02(B) —01(B) Ym
0 0 0 Y1
1 0 0 0 Y2
+ T |
Z = 0 0 0 Ym—1
om(B) — om () 02(B) — o2(a)  01(B) — o1() Ym faa)
32

Theorem 5 cannot be applied to (32) because the matrices corresponding to the
regular singularities z = 0 and z = 1 do not commute. However, we are not aiming
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at the cancellation of factorials for the system (32). The explicit calculation of the
constant of the cancellation of factorials for a hypergeometric differential equation
lost its urgency after [10]: the use of Padé approximants of the second kind (in place
of the first) as approximating function forms allows one to cancel factorials without
great effort (see [10] and [16]). Our aim is to calculate the constant corresponding to
the cancellation of factorials for the system of linear differential equations adjoint to
the homogeneous part of (30); this will enable us to use the main result of [17] and
find estimates of the measure of irrationality of the values of the hypergeometric
function (28) (not involving its successive derivatives) at rational points.

In the general case of (8) the adjoint system is obtained by transposition and
changing the sign of the matrix (Q;(z)) ; in our case it has the following

l,j=1,....m’
form:
Y1 Y1
d Y2 1 1 Y2
Ym—1 Ym—1
Ym Ym
where
(00 0 owm(B)
-1 0 0 O'm_l(,B)
Al _ 0 -1 ... 0 O'm_z(,B) 7
\ 0 ~1 0 ()
0 0 -1 o(B)
(0 0 O'm(a)_o'm(ﬁ)
0 0 am_l(a) - O'm_l(,B)
Ao = | oo

The first m — 1 columns of A, are equal to zero, therefore the rank of the matrix
is 1. Hence the eigenvalue A = 0, which has multiplicity m — 1 in A,, enters the
minimal polynomial with multiplicity 1. The other eigenvalue is equal to the trace
of Ay andis y=o1(a) —o1(B) =1+ -+ am—B1— = B

Up to a sign the matrix Ay is a Frobenius block (see [13], Chapter 6, §6); its
characteristic polynomial is

det(A; — AE) = (=1)™(A™ — ) A™ L 4 0N 2 4o (=) ™0,)
= (=)A= B)A=B2) - (A= Bm).

Hence the eigenvalues of Ay are fB1,..., Bm.

Lemma 11. Assume that the parameters B, ..., By are pairwise distinct and v #
0; let b be the least common denominator of v, B1, ..., Bm- Then the system (33)
has the property of the cancellation of factorials with constant beX®V*2 where the
function x(-) is defined by (5).
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Proof. The eigenvalue 3; of the matrix A; corresponds to the eigenvector

0m—1(1817 .- '7/8j—1a13j+1a .- 7:8m)

t .
tlj‘ 0m—2(1817'-'7/8j—1a18j+1a"'7:8m)
2j | — =1
= , j=1,...,m,
to 01 (ﬂla"'aﬂ] 17:6_7+17"'7/6m)
m (ﬂla"'aﬁ]—laﬁ]—i—la"'aﬁm)

m—1-—1

where o;( - ) is the coefficient of z in the polynomial

(z4B1) - (24 Bj-1)(z + Bjt1) - (2 + Bm)-

For the transformation matrix T' = (1), j=1,....m We set T=T""1= (flj)l,jzl,m,m.
Then

s + .
tlj_( mjﬁ H,Bl ,Bk; laj_la"'ama
k#l

A =T 1A Tisa diagonal matrix: A = diag(B1,- .., Bm), and Ay = T~ 1A,T has
the following form:

~ a1 ™ By
Ap=1|{ ... ...1), aj=-Bi—a) [[7Z . j=1,...,m.
a i1 Bi = Pr
m =
k#j
We now write down the matrices Q™ (z), n = 0,1,2,..., from Definition 3

corresponding to the system of differential equations (33). By (23) and (27) we
obtain

tQ["](z):<d tA1+ L A2> E

dz z—1
tA A
= Z < y 2>n17n2 3 n=0,1,2,..., (34)
an(z _ 1)77;2
n1,n2>0

ni+na=n
where
0 ifny <0orng <0,
E ifny=ny=0,
(*A1 — ny + 1)(*A1, " As)n, —1 1,
+ (*A2 — n2 + 1)(*A1,*A2)n, my—1  Otherwise

<tA17 tA2>n1 N2 =

(see the remark to Theorem 5). We also point out that the expansions into sums
of partial fractions

1 Cxnnitna—k\ 1 N (nit+ns—k 1
Z’n1+1(1 — Z)'"«2+1 - Z No Zk-l_l + Z ny (]_ — Z)k+1 ’
k=0 k=0
nl,n2:O,1,2,..., (35)
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and rearrangements of terms in (34) do not allow one to calculate the constant of
the cancellation of factorials for the system (33) because the matrices 'A;, %45 do
not commute.

Setting
_ _ 1
BlztAlzdiag(ﬂl,...,ﬁm), B2:tA2: (a1 am),
1
from (34) we obtain
By, By)
Y10l () T) = (B1, Ba)nymy =0,1,2,.... 36
( Q (Z) ) Z z"l(z—l)”2 3 n ) Ly 4 ( )
nl,n2>0
ni+ns=n

We now fix a pair of non-negative integers ni,ny. If ng = 0, then by Lemma 9
the denominator of the matrix

(B1, Ba)ny my _ (Bi)n,
(n1 + ’nz)' 1!

divides bf Hp|bo p™®) for each k > ny = nq + ng; here by = den(B1, ..., Bm)-

Next, assume that ng > 0. The recursive relations for (By, B2)n, n, (and for-
mula (26) in the case of commuting matrices) show that the matrix (B1, B2)n, n,
is a sum of N = (nq + n2)!/(n1!ny!) terms, each coinciding with (B1)y,, (B2)n, up
to the order of the factors:

N
(B1, B2)nyny = ZB(T)' (37)

r=1

We point out straight away that if at least one of the square matrices X; and X,
is diagonal, then the main diagonals of X; X5 and X3X; are the same. Since the
matrices By —IlE, 1 =0,1,...,n1 — 1, are diagonal, the main diagonal of each term
in (37) is equal to the main diagonal of (B1)n, (B2)n,. The matrix By satisfies the
relation

Bj = (a1 + -+ am)Bs = Tr By - By = 7By,
therefore (Bs)n, = (v — 1)n,—1B2 and

a1</81>n1 a2<:81>n1 s am(ﬁl)ﬂq
<B1>n1 <B2>n2 = <’Y — 1>n2 1 a1<ﬂ2>n1 a2<132>n1 <o am<52)n1 ) (38)

Consider now an arbitrary term B = B, 1 < r < N, of (37). The factor
B, — jE enters this term to the left of By — [F if and only if 7 > [; the same
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can be said about the relative order of the factors Bs — jE and By — [F in B.
Distinguishing the first (and, in fact, the only) occurrence of Bs in B we obtain

1
B=X-By-(B)s=X- 5 (a1 ... am) - diag((B1)s,---» Bm)s)
= | 7 | (@1(B1)s a2(Ba)s - am(Bm)s)
a1<ﬁ1>s$1 02<ﬂ2>s$1 am(ﬁm)swl
_ al(ﬁl)sfﬁz (12<,32>s$2 am(ﬂm)sxz _ (39)
(B stm ax(Bo)otm - am{Bn)stm

A comparison of the main diagonals of (38) and (39) yields

‘/Bl:<7_1>n2—1'<:8l_8>n1—3, l:].,...,m.

Thus, the terms in (37) have the following form:

B={(y—1)p,-1- (aj<16j>3<'6l h S>"1_s>z

,j=1,....m

with 0 < s < my. Setting a = den(ay,...,a,) and b = den(~y, B, ..., Bm), denoting
by gi the least common multiple of

k!

m, ko,k1,ka =0,1,2,..., ko+ ki + ke =k, (40)

and taking account of the condition v # 0, we obtain by Lemma 9 that the least
common denominator of the entries of the matrix

¥yB _ sl(ny—s)!ng! ~vB
(n1+mn2)!  (ny+n2) s (ng—s)! ny
divides
gk - abk [[p>® (41)
plb

for each k > ni + ng; since B is an arbitrary term in (37), we conclude that the
least common denominator of the entries of

'7<Bl’ B2>n1,n2 — i ’YB(T)
(n1 + ng)!

also divides (41) for each k > ny + na.
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The degree of a prime p in the (prime) factorization of each integer (40) is by (4)
equal to the quantity

== (|2 - 2]-|2] -2

m=1 (42)
ko, ki ks = 0,1,2, ... ko+ ki + ko = k.
Summation in (42) proceeds only for m < |logk/logp|; in addition,
(€0 + &+ &) — [&] — [&2] — [&] <2, o,81,&2 € R
Hence for all primes p < k& we have
log k log k
(k) = k) = k) = (k) < 2| 5 E| < 2R,
ko, ki,ko =0,1,2,..., ko+ k1 + ks = k.
These inequalities yield the estimate
g < H p2logk/logp — e27r(k:)logk’
p<k
where 7(k) is the number of primes not exceeding k, therefore
lim g;/k < el (43)

k—o0

Taking account of this limit relation, identities (36), and Lemma 5 we see that the
system of homogeneous differential equations (33) has the property of the cancel-
lation of factorials with constant beX(®)+2. The proof is complete.

Remark 1. Repeating the above arguments in the case v = 0 for each term in (37)
we obtain the equality

B = (—1)"2_1(n2 — 1)! . (aj<,8j>s<,8l - 3>n1—s>

l,j=1,....om

for some s, 0 < s < ny, and therefore the least common denominator of the entries

of the matrix
<B17 B2>n1,n2

(1 + na)!
divides the integer
dygr - ab® Hpr(k)
plb
for each k > ni + no, where dj, is the least common multiple of 1,2,..., k. In view

of limit relations (18) and (43) the cancellation of factorials occurs in this case with
constant beX(®)+3,

Remark 2. The proof of Lemma 11 is suitable for the calculation of the (actually,
the same) constant of the cancellation of factorials for the original inhomogeneous
system (32) in the case of pairwise distinct parameters S1, ..., Bm-

The following results are related to the arithmetic and algebraic properties of
the functions (29).
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Lemma 12. Let by and by be the denominators of numbers o, § € Q\{—1,-2,...};
let b be the least common multiple of by and bs. Also, let ¢, € N, k € N, be the
least common multiple of the rational numbers

, n=201,...,k.
<_5>n
Then ;
Tim 1/k< — op(b2) 1
Ji el < @ =t
where ;
1
)= D, o e)= > 1, beEN (44)
¥ 1<n<b 1<n<b
(n,b)=1 (n,b)=1

Proof. The least common denominators of the numbers
(=)p, n=0,1,....k, and (—=B)n, n=0,1,...,k,

are b¥ and b%, respectively. The least common denominator of the numbers

, n=0,1,...,k,
<_18>n

is equal to the least common multiple dj of the numbers
—a+by(n—1), n=1,...,k, a=byf3 € Z.
According to [17], Lemma 3.2 we have the estimate

— logdy
lim
k— o0 k

< p(bz),

where the function p(-) is defined by (44). This completes the proof.

Lemma 13. Let q; and gy be the products of the denominators of rational numbers
Q1y.eyQp and B, ..., Bm, respectively; let b be the least common multiple of q1
and qo; let by, ..., b, be the denominators of B1,...,Bm, respectively. Then the
function (28) belongs to the class G(1,®), where ® = eP(b1)++p(m)g, /p,

Proof. The estimate of the quantity ® follows from Lemma 12. Since

1/n

lim (= Xn =1, Mg {-1,-2,...},

n—oo| n!

the convergence domain of (28) is the disc |z| < 1. The proof is complete.
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Lemma 14. If f(2) € G(C,®), then §f(z) € G(C,®) for § = zL.

Proof. This is obvious. If the Taylor series
F(2) =) fn2"
n=0

of f(z) converges for |z| < C, then the series

oo

5f(z) = nfaz"

n=1

also converges in this disc. If we choose a sequence of positive integers {pg}ren
such that
Yk fn € Z, n=201,...,k, keN,

then
wrnfn € 7, n=201,...,k, keN.

Thus, df(z) € G(C, ®), as required.

Corollary. Let q; and g be the products of the denominators of rational numbers
A1y.eny O and B, ..., Bm, respectively; let b be the least common multiple of q1
and qo; let by, ..., b, be the denominators of PB1,...,Bm, respectively. Then the
family of functions (29) belongs to the class G(1, ®) for ® = ePbr)++plbm)g, /p,

Lemma 15. The Wronskian (the determinant of the matriz of a fundamental
system of solutions) W (z) of a homogeneous linear differential equation of order m

(64 B1) - (6+Bm)—2z(0+a1) (6 +am))y =0, §=z2—, (45)

z

satisfies the differential equation

((5+ﬂ)—z(5+a))y=0, a:o'l(a), /6:01(13)7 (46)

and therefore, for rational o and [, is an algebraic function:

W(z)=CzP(1—2)*P, CeC (47)

Proof. The Wronskian W (z) of differential equation (45) is equal to the Wronskian
of the system of linear differential equations

d 1
L= I=1,...,m—1
dzyl Zyl+17 ; ;M ;

d _01(B) = zo1 () 02(B) — zo3(ax)
az0m = z(z—1) Ym + z(z—1)

om(B) — zom ()
z(z—1)

Ym—1+---+ Y-

(48)
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By Liouville’s theorem ([18], Chapter 3, §27.6), it satisfies the equation

4 T Q) -, (49)

dz
where TrQ(z) = (8 — za)/(2(z — 1)) is the trace of the matrix of the system (48).
Equation (49) can be written in the form (46). Its solution (47) can be obtained
by direct integration.

We now state several sufficient conditions from [19] on the parameters of the
function (28) ensuring that the functions (29) are algebraically independent over
the field C(z):

(1) linear irreducibility: oy — B; ¢ Z for all l,j =1,...,m;
(2) Belyi irreducibility ([19], Chapter 3, Lemma 3.5.3): for each pair of positive
integers my and my, my + mg = m, there exist no u,v € Q such that either

9 9

(C\fl,OéQ,---,Oém) ~ (

u u-+1 u+mi—1 v v+1 v—i—mg—l)

ml’ m]_ g0 s sy ml m2 m2 g0 s sy m2
u+v ut+v+1 u+v+m-—1
(6171827"'7Bm)N( M PR )7
m m m

or

ut+v u+v+1 u—i-v—i-m—l)

(al,ag,...,am)f\/< y yeeay

m m m

I

u u-+1 u+mi—1 v v+1 v+ me —1
(/617ﬂ27"'713m) ~ (— ! 2 )

ml’ ml 3 ml 7m27 m2 3 m2

(3) Kummer irreducibility ([19], Chapter 3, Lemma 3.5.6): the integer m has
no divisor mg > 2 such that

1 1 1
(Ojl,(lQ,---,am)N oL+ —,a2+ —,...,Qp + — |,
mo mo mo
1 1 1
(ﬂlaﬂ%"'aﬁm)r\/ ﬁ1+—7ﬁ2+—7"'7ﬁm+— )
Mo mo mo
(4) 2y ¢ Z, where y=a1+ -+ — B1— - — Bm-
The notation (A1,...,Ay) ~ (A},-..,A),) indicates that for some permutation

o:{1l,....m} > {1,...;m} forall Il =1,...,m we have )\l—)\;(l)EZ.

Lemma 16. Let ay,...,0m,01,...,0m € Q\{—1,-2,...} be numbers satisfying
conditions (1)—(4) above. Then the functions (29), where f(z) is defined by the
series (28), are algebraically independent over the field C(z).

Proof. By [19], Chapter 3, Theorem 3.5.8, if conditions (1)—(4) are satisfied, then
the Galois group of homogeneous linear differential equation (45) of order m is
isomorphic to SL,,(C). This means that the functions in the fundamental system
of solutions of (45) are related by means of only one algebraic relation over the
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field C(z): the determinant of this fundamental system is an algebraic system
(Lemma 15). Hence if g(z) is an arbitrary non-trivial solution of (45), then the
functions g(z),dg(2),...,6™ 'g(z) are algebraically independent over C(z). By
Nesterenko’s theorem ([20], Theorem 2; see also [15], Chapter 9, § 6, Theorem 2)
either the functions (29) are algebraically independent over C(z) or they all belong
to C(z). The second case is impossible because (28) is not a rational function. The
proof is complete.

Theorem 6. Assume that the parameters ay,...,o, and B, ..., Bm of the func-
tion (28) satisfy conditions (1)—(4), let Bi,..., Bm be distinct, let £ be a rational
number, £ = a1/az # 0 with az = den € N, and let ¢ < 1/(m + 2) be an arbi-
trary positive constant. Let by be the least common denominator of v, 1, - ., Bm,
let ¢1 and q2 be the products of the denominators of ay,...,a, and B, ..., Bm,

respectively, b the least common multiple of ¢1 and q2, and H the maximum of the
absolute values of the coefficients of (31). Also let & = er(denfr)+-+p(denfm) g, /p,

Co = (SbOHex(b0)+3)€(1—log 5)(I)1+6—|—(2—(m—1)s)/(6m(m—l)!)’

_ (1+¢)logas + log Cy
o= (1= (m+2)e)logas —logCo — (2 — (m + 1)e) log |a1]|’

where the functions x(-) and p(-) are defined by (5) and (44), respectively. If for
some & condition ng > 0 s satisfied, that is, if

a;—(m+2)6 > CO |a1 |2—(m+1)6,

then f(&) is an irrational number. Moreover, the estimate
p 11—
10 -5

holds for each n > ny and arbitrary p € Z and q € N, q > q.(&, €, 7).

Proof. Let Ty(z) = bT'(z) = bz(z — 1) be the common denominator of the system
of differential equations (32) which hold for the family of functions (29) in the class
G(1,®) (see the corollary to Lemma 14); in addition,

To(z)Quj(2) € Zz], l=1,....m, j=0,...,m.
Then

max{deg Ty — 1, nlu}x{deg TOQlj}} =1, maX{H(TO), Hlli;,X{H(TOQlj)}} =bH.

It follows from condition (4) that v # 0. By Lemma 11, the cancellation of factorials
for the system of differential equations (33) adjoint to the homogeneous part of (32)
holds with the constant ¥ = byeX(?0)+2 (with the constant ¥ = byeX(b0)+2/p if
the polynomial T'(z) in Definition 3 is replaced by Tp(z)). Lemma 16 yields the
algebraic independence of the functions (29) over the field C(z). Applying now the
main theorem and inequalities (0.9) of [17] we arrive at the required result.
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7. Cancellation of factorials for homogeneous linear differential equa-
tions with constant coefficients. We consider the system of homogeneous linear
differential equations

d m
_yl:ZAljyja l:17---7ma Ale(C, l7j:1""’m’ (50)
=1

and the associated differential operator

ZZAU%@ A= : (51)

=1 j5=1 Aml Amm

Thus, with each matrix A we can associate the linear differential operator [A] by
formula (51). We note first of all the property of linearity:

[A1A1 + A2Az] = A[A1] + A2 Aq], A1, A2 € C,

for all square matrices A; and As of dimension m.
For differential operators [A] and [B] we define the operations of formal multi-
plication

and taking the composite

1o 1= (353 pany) o (S35 v )

i=1 k=1 =1 j=1
=33 B g+ (3 anyr )+ (32 Aungy )
=1 k= i=1 k= =1 j=1

m m m m " 02
ZZZ Uz zkyka " +ZZ<ZAU:UJ) (kz_:_lekyk) 8yl 8y7,

=1 k=1 =1
= [AB] + [A] - [B].
Obviously associative, both operations are distributive over addition. Commuta-

tivity holds only for formal multiplication, although the order of factors in the
composite

n=[A]l—n+1)o([A]—n+2)o---0([A] — 1) o [A4] (52)

is of no importance. We point out also the ‘Leibniz property’ of taking the com-
posite:
[B] o ([A1] - [A2]) = ([B] o [A1]) - [A2] + [Aa] - ([B] o [A2]).

By [A]™ we shall mean the formal product of n operators [A].
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Definition 4. We say that the differential operator (51) (or the system of equa-
tions (50)) associated with the matrix A has the property of the cancellation of fac-
torials with constant ¥ > 1 if there exists a sequence of positive integers {1 }ren
such that the operators

1
biiAn, =01k keN (53)

take the ring Z[y1, . . ., Ym] into itself and

im /" < .

k—o0

Lemma 17. The differential operator (52) satisfies the identity

T o

51,820,820
s1+2s82+---+ns,=n

where the symbol (- ), is defined by (1).

Proof. We proceed by induction on n. The basis of induction n = 1 is obvious.
Assume that (54) holds for some n. Then we set

Ulsy, 59 5m) = ——[A]" - 1 [<A>2r L [<A>"r" (55)

81! Sg! 2!

and write (54) in the following form:

1
—.An = Z U(Sl,SQ,...,Sn)

81,82,...,8‘"20
s1+2s2+-+ns,=n

= Z U(81782,...,8n73n+1)

51,82,..4,8n,8n4+120
s1+2s2+--+nsp+(n+1)spp1=n

(here, obviously, s,4+1 = 0). Since

([A] —19) o [(A)i] = [A] - [(A)s] + [(A)i1],
it follows that

([A] —n) o U(81,825- -+ Sn; Snt1)
=(s1+1)U(s1+1,592,..., 80, Sn+1)
+2(so+1)U(s1 — 1,89+ 1,83,...,8n, Snt1)
+3(s3+1)U(s1,82 — 1,83+ 1,84, .-, 8n,8n41) + -
+(n+1)(spt1+ 1)U (51,52, -, Sn—1,50 — 1, 8p41 + 1),
51582y« s 8n, Spt1 = 0, $1+ 282+ +ns, + (n+1)s,11 = n.
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Hence
1 [Al—n 1
Ay = oA,
(n+ 1)! T 1 Tl
s1+1
= Z : U(51+1;32a---75n73n+1)

n+1
$1,82,--,8n,Sn+1 ZO
514282+ +nsp+(n+1)spt1=n

2(s9+1
+%U(51—1,82+1,83,...,sn’3n+1)+..,
n—+1)(s +1
+( 7)1(_:-1%1 )U(S1,S2,...,Sn_1,sn—1,5n+1_|_1)
s’ _|_28/ ++(n+1)sl
= Z L 2 n+1U(s'1,SI2,...,s/n+1)

., / n+1
>0
811895038412

s'1+23;+~~~+(n—|—1)s;+1=n+1

= Z U(sy: 89 -1 5n41),

81,85,0++,87, 4120
s'1+2s'2+~~~+(n+1)s;+1=n—|—1

which demonstrates (54) for n + 1. The proof is complete.

Lemma 18. If B is a matriz with integer entries, then the differential operator
[B]*/s! takes the ring Z[y1, . .., Ym] into itself.

Proof. We write the differential operator [B] in the following form:

m o m
[B]:Zbla_yl’ b= Bijy; € Zly1,- -, Ym)-

=1 j=1

Then the differential operator

1 1 (&, 0’ b9t bl 9l
s S\ U Lm0 1 oy m: OYm
It =s
takes the ring Z[y1, . . ., ym] into itself because the operators
1 9l -
70 < 10 J=1L4L...,m
l;! ay;a

(Example 1) have this property and, in addition,

l; .
bj’EZ[yl,...,ym], j=1,...,m.

The proof is complete.
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Lemma 19. Let sq,S2,..., s, be non-negative integers and let p be a prime. Then
$1Tp(1) + 527p(2) + - - - + skTp(k) < Tp(s1 + 282 + - - + ksg), (56)

where T, (k) is the power of p in the factorization of k! (see (4)).

Proof. We point out first of all that for real &1,..., &,

[€a] 4+ + [&) < [§0 + -+ &k
(see [2], Part 8, Chapter 1, § 1, Problem 7). Hence

s1l&] + s2[&a] + -+ sk (&) < [5160 + 5282 + -+ sk&i]- (57)
Substituting in (57) one after another the values
non n
€n = —y =, =91, n=1,...,k,
p p* p’

and adding the resulting inequalities, in view of (4), we obtain (56). The proof is
complete.

Theorem 7. Assume that the differential operator (51) is accociated with a rational
matriz A, den A = b, whose minimal polynomial has no multiple zeros; let t1 and to
be the least common denominators of the entries of T and T, respectively, where
T is a transformation matriz bringing A to Jordan normal form. Then the opera-
tor [A] has the property of the cancellation of factorials with constant t1t2bex ()

Proof. Let k be an arbitrary positive integer. By Lemma 9 the entries of the
matrices

A)n
tltganpr(n)'<n—>!, nzO,l,...,k,
plb
are integers. Hence it follows by Lemma 18 that the differential operator (55)
multiplied by

(tltz)nbn HpslTp(1)+S2Tp(2)+"'+s"TP(n) (58)
plb

takes the ring Z[y1, - - ., ym| into itself. Since s1+2s9+---+mns, = n < k, it follows
from Lemma 19 that the integer (58) divides

i = (t1t2)kbk Hpr(k).
plb

We now apply the identity of Lemma 17. For the sequence {1y }ren the opera-
tors (53) take the ring Z[y1, ..., Ym] into itself. The estimate (18) completes the
proof of the theorem.

Remark. Corresponding to the system of differential equations (8), (12) of Fuchs
type is the differential operator

d 1 1
D= —+—[A])+---+ [As].
dz = z—m Z—"s
This enables one to use Theorem 7 for another proof of Theorem 5 in the case
of commuting matrices Aq,..., As such that their minimal polynomials have no

multiple zeros. In that way one obtains, however, a slightly worse constant ¥ (by
comparison with our formulation of Theorem 5).
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