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Thetanulls and differential equations

V. V. Zudilin

Abstract. The closedness of the system of thetanulls (and the Siegel modular
forms) and their first derivatives with respect to differentiation is well-known in
the one-dimensional case. It is shown in the present paper that thetanulls and their
various logarithmic derivatives satisfy a non-linear system of differential equations;
only one and two-dimensional versions of this result were known before. Several dis-
tinct examples of such systems are presented, and a theorem on the transcendence
degree of the differential closure of the field generated by all thetanulls is estab-
lished. On the basis of a study of the modular properties of logarithmic derivatives
of thetanulls (previously unknown) relations between these functions and thetanulls
themselves are obtained in dimensions 2 and 3.

Bibliography: 26 titles.

Introduction

Theta functions is a classical domain of mathematics, marked with beauty. Many
results in mathematical analysis, algebraic geometry, differential equations, and
other areas owe their existence to its development. There are quite a few mono-
graphs (sound examples are [1]–[3]) and papers dedicated to theta functions, of
which a small part can be found in our list of literature.

The first systematic study of one-dimensional theta functions was carried out by
Jacobi (see [4], [5]), although his notation is distinct from the following notation,
which was used in later papers of Frobenius, Krazer, Wirtinger, and other authors:

ϑ1(z, q) = 2
∞∑
n=0

(−1)nq(n+1/2)2
sin(2n+ 1)z

= 2q1/4 sin z − 2q9/4 sin 3z + 2q25/4 sin 5z − · · · ,

ϑ2(z, q) = 2
∞∑
n=0

q(n+1/2)2
cos(2n+ 1)z

= 2q1/4 cos z + 2q9/4 cos 3z + 2q25/4 cos 5z + · · · ,

AMS 1991 Mathematics Subject Classification. Primary 14K25, 11F46; Secondary

35Rxx.
This research was carried out with the partial support of the Russian Foundation for Basic

Research (grant no. 97-01-00181).



2 V. V. Zudilin

ϑ3(z, q) = 1 + 2
∞∑
n=1

qn
2

cos 2nz = 1 + 2q cos 2z + 2q4 cos 4z + 2q9 cos 6z + · · · ,

ϑ4(z, q) = 1 + 2
∞∑
n=1

(−1)nqn
2

cos 2nz

= 1− 2q cos 2z + 2q4 cos 4z − 2q9 cos 6z + · · · . (0.1)

The functions (0.1) are entire functions of the z-variable for each |q| < 1. The
parameter q is related to the modular parameter τ by the formula q = eπiτ , Im τ > 0
(see [6]; § 21.1 and § 21.7). Each function (0.1) satisfies the differential heat equation

q
∂ϑ(z, q)
∂q

= −1
4
∂2ϑ(z, q)
∂z2

(0.2)

(see [6]; § 21.4). In addition, the ratios of theta functions (0.1) make up a closed
system with respect to z-differentiation (see [6]; § 21.6).

In formulae containing theta functions with the same parameter q this parameter
is usually dropped, as if it were a constant rather than a variable. Consistent with
this ideology is the definition of the thetanulls (or theta constants)

ϑ2 = ϑ2(0), ϑ3 = ϑ3(0), ϑ4 = ϑ4(0) (0.3)

as the values of even theta functions (0.1) at z = 0. Of course, the functions (0.3)
are not constant: they depend on the q-variable.

Back in 1848, Jacobi [7] showed that each thetanull in (0.3) satisfies the same
third-order differential equation. Jacobi’s equation has the following form in terms
of δ-differentiation:(

ϑ2 · δ3ϑ− 15ϑ · δϑ · δ2ϑ+ 30(δϑ)3
)2 + 32

(
ϑ · δ2ϑ− 3(δϑ)2

)3
= 4ϑ10

(
ϑ · δ2ϑ− 3(δϑ)2

)3
, δ = q

d

dq
=

1
πi

d

dτ
(0.4)

(see, for instance, [8]). A hundred years later, Mahler [9] proved a result on the
algebraic independence of functions ϑ, δϑ, δ2ϑ, which showed, in particular, that
none of the thetanulls satisfies a second-order algebraic differential equation with
coefficients in C[τ ] or C[q]. We can formulate Mahler’s result in [9] as follows.

Mahler’s theorem. The variable τ and the functions q = eπiτ , ϑj, δϑj, and δ2ϑj
are algebraically independent over the field C for each j = 2, 3, 4.

Let K be the differential closure of the field generated over C(q) by the functions
(0.3) with respect to δ-differentiation. By Mahler’s theorem the transcendence
degree of K over C(q) is 3 (see also [10] and [11] on this issue). The bulkiness
of (0.4) makes it expedient to discuss the choice of the generators of the field K, a
system of three elements of K algebraically independent over C(q), such that the
differential equations for them are possibly simple.

The first example of such a system, the logarithmic δ-derivatives of thetanulls

ψ2 =
δϑ2

ϑ2
, ψ3 =

δϑ3

ϑ3
, ψ4 =

δϑ4

ϑ4
, (0.5)

was presented by Halphen [12] in 1881, who proved the following result.
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Halphen’s theorem. The functions (0.5) satisfy the system of differential equa-
tions

δ(ψ2 + ψ3) = 4ψ2ψ3, δ(ψ3 + ψ4) = 4ψ3ψ4, δ(ψ4 + ψ2) = 4ψ4ψ2. (0.6)

Writing (0.6) in a less compact form

δψ2 = 2(ψ2ψ3 + ψ2ψ4 − ψ3ψ4),

δψ3 = 2(ψ2ψ3 + ψ3ψ4 − ψ2ψ4),

δψ4 = 2(ψ2ψ4 + ψ3ψ4 − ψ2ψ3)
(0.7)

one can see the closedness of the system (0.5) with respect to δ-differentiation. The
thetanulls (0.3) are connected with the functions (0.5) by the well-known relations

ψ3 − ψ4 =
1
4
ϑ4

2, ψ2 − ψ4 =
1
4
ϑ4

3, ψ2 − ψ3 =
1
4
ϑ4

4, (0.8)

which (in slightly distinct notation) can be found, for instance, in [13]; Chapter 11,
formula (93.6).

Another example of a ‘simple’ system of generators of K was obtained by Rama-
nujan [14] (1916).

Ramanujan’s theorem. The functions

P (q) = 1− 24
∞∑
n=1

σ1(n)qn,

Q(q) = 1 + 240
∞∑
n=1

σ3(n)qn, R(q) = 1− 504
∞∑
n=1

σ5(n)qn,

(0.9)

where σk(n) =
∑
d|n d

k, satisfy the system of differential equations

δP =
1
12

(P 2 −Q), δQ =
1
3

(PQ−R), δR =
1
2

(PR−Q2). (0.10)

The algebraic independence of the functions (0.9) follows from above-mentioned
Mahler’s result, and their algebraicity over K is obvious from the formulae

P (q2) = 1− 24
∞∑
n=1

q2n

(1− q2n)2
= 4
(
δϑ2

ϑ2
+
δϑ3

ϑ3
+
δϑ4

ϑ4

)
(0.11)

(see, for instance, [6]; § 21.41),

Q(q2) =
1
2

(ϑ8
2 + ϑ8

3 + ϑ8
4), R(q2) =

1
2

(ϑ4
4 − ϑ4

2)(ϑ4
2 + ϑ4

3)(ϑ4
3 + ϑ4

4) (0.12)

(see, for instance, [15]; Kapitel III, Hilfssatz 1.16, where there is a minor misprint,
or [16]; Chapter 6, Exercise 4, without misprints); we drop the parameter q of
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thetanulls on the right-hand sides of (0.11) and (0.12). The fact that the Ramanujan
functions in (0.11) and (0.12) depend on q2 is not a serious problem: in view of the
formulae

ϑ2
2(q2) =

1
2
(
ϑ2

3(q)−ϑ2
4(q)

)
, ϑ2

3(q2) =
1
2
(
ϑ2

3(q)+ϑ2
4(q)

)
, ϑ2

4(q2) = ϑ3(q)ϑ4(q)

(see [16]; Chapter 1, § 1.8) the differential closure of the field generated over C(q)
by the functions ϑ2(q2), ϑ3(q2), and ϑ4(q2) with respect to δ-differentiation is the
same (up to an algebraic extension) as K.

Our interest in thetanulls and their differential properties originated from the
following result of Nesterenko [17], [18] in transcendental number theory.

Nesterenko’s theorem. For each q0 ∈ C, |q0| < 1, the collection

q0, P (q0), Q(q0), R(q0) (0.13)

contains at least three algebraically independent numbers over the field Q.

Of course, one can replace the collection (0.13) by q0, f1(q0), f2(q0), f3(q0) for
each choice of a system of generators f1, f2, f3 in the field K (although the above
result was established specifically for the Ramanujan functions!). One consequence
of Nesterenko’s theorem is the algebraic independence over Q of the quantities π, eπ,
and Γ(1/4).

The proof of this result is technically not simple; it is based upon ‘nice’ alge-
braic properties of the non-linear system of differential equations (0.10) and ‘nice’
arithmetic properties of the expansions (0.9). We shall not elaborate on this, but
point out instead that the system (0.7) and the expansions of the functions (0.5)
in powers of q have similar ‘nice’ properties (see [19]).

Whether there are other examples of such ‘nice’ systems of functions and non-
linear differential equations connecting them, is an open question. In [20] the author
shows a way to the derivation of such systems of differential equations (similar to
Halphen’s system) using second-order Fuchsian linear differential equations, but
their solutions, by contrast to the functions (0.5), do not seem to have ‘nice’ arith-
metic properties.

In the present paper we obtain closed systems of partial differential equations
for multidimensional thetanulls and their logarithmic derivatives and study the
algebraic and modular properties of these systems.

We now fix a dimension (genus) g and define a g-dimensional theta function by
means of a series:

ϑ(z,T) =
∑
n∈Zg

exp(πitnTn+ 2itnz), (0.14)

z =

 z1
...
zg

 ∈ Cg, T =

 τ11 . . . τ1g
...

. . .
...

τg1 . . . τgg

 ,
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where T is a symmetric complex matrix with positive definite imaginary part (the
space Hg of such matrices of order g(g + 1)/2 is an open subset of Symg(C) and
is called the Siegel upper half-space). We write vectors as columns and use the
superscript t to denote transposition: thus, tnz is the scalar product of the vectors n
and z.

Note that the series (0.14) converges absolutely and uniformly in z and T on
each compact subset of Cg × Hg, that is, it defines a holomorphic function on this
set (see [3]; Chapter II, Proposition 1.1).

With each matrix T ∈ Hg one can associate the lattice LT = πTZg + πZg ⊂ Cg.
The theta function has the property of quasi-periodicity with respect to LT, namely
([3]; Chapter II, § 1),

ϑ(z + πTm+ πn) = exp(−πitmTm− 2itmz)ϑ(z), n,m ∈ Zg.

Along with the function (0.14) we consider its shifts by half-periods of the lat-
tice LT, theta functions with characteristics

ϑa(z,T) =
∑
n∈Zg

exp
(
πit
(
n+ 1

2a
′)T(n+ 1

2a
′)+ 2it

(
n+ 1

2a
′)(z + π

2a
′′))

= exp
(
πi
4
ta′Ta′ + ita′

(
z + π

2a
′′))ϑ(z + π

2 Ta′ + π
2a
′′,T

)
,

(0.15)

a = (a′,a′′) ∈ Z2g,

which we shall also call theta functions. The property of the quasi-periodicity of
the functions (0.15) with respect to the lattice LT (see [3]; Chapter II, § 1) allows
one to consider only functions with characteristics a ∈ Z2g/2Z2g. In particular,
for g = 1 we obtain the collection of functions (0.1) (where ϑ1(z, q) has a constant
coefficient). We point out at the very beginning that we shall often think of the
set K = Z

2g/2Z2g, its quotients and subsets as of systems of Z2g-vectors with
components zeros and ones.

Similarly to the one-dimensional case we shall drop the parameter T in our
notation for theta functions and define the thetanulls as the values of even theta
functions (0.15) at the point z = 0. Since

ϑa(−z) = (−1)|a|ϑa(z), where |a| = ta′a′′ (mod 2), a = (a′,a′′) ∈ Z2g

(see [1]; Teil 2, Kapitel 7, § 1), the function ϑa(z) is even if and only if the integer |a|
is even and it is odd otherwise (see [2]; Chapter V, § 1, Theorem 1). We say that
the characteristics of even theta functions are even and denote the set of even
characteristics by K∗, and we say that the characteristics of odd theta functions
are odd (and leave the corresponding set without notation of its own). A simple
calculation shows (see [1], Teil 2, Kapitel 7, § 3, Satz IV) that the number of even
characteristics is 2g−1(2g + 1).

We shall consider the differential operators

δjj =
1
πi

∂

∂τjj
, j = 1, . . . , g, δjk =

1
2πi

∂

∂τjk
= δkj , j, k = 1, . . . , g, j 6= k,
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and various partial ‘logarithmic’ derivatives of the thetanulls:

ψa,jk = ψa,jk(T) =
δjkϑa
ϑa

= ψa,kj , a ∈ K∗, j, k = 1, . . . , g. (0.16)

Theorem 1. The functions (0.16) satisfy the system of differential equations

ϑ4
a · δlsψa,jk = −ϑ4

a · ψa,lsψa,jk −
1

Njkls
ϑ4
a ·

∑∗

j1,k1,l1,s1

ψa,j1k1ψa,l1s1

+
1

Njkls · 2g−2

∑
b∈K∗

(−1)|a,b|ϑ4
b ·

∑∗

j1,k1,l1,s1

ψb,j1k1ψb,l1s1 ,

a ∈ K∗, j, k, l, s = 1, . . . , g, (0.17)

|a, b| = ta′b′′ − tb′a′′ (mod 2), a = (a′,a′′) ∈ Z2g, b = (b′, b′′) ∈ Z2g,

where
∑∗ is summation over all possible permutations of the set {j, k, l, s} and

Njkls is the number of these permutations.

The differential closure (with respect to δjk-differentiations, j, k = 1, . . . , g) of
the field generated over C(T) = C(τjk)j,k=1,...,g by the thetanulls has, in view of
Theorem 1, a finite transcendence degree over C(T). A precise calculation of the
transcendence degree of this differential field has been carried out in a joint paper
of Bertrand and the present author.

Theorem [21]. The transcendence degree over C(T) of the differential closure (with
respect to δjk-differentiations, j, k = 1, . . . , g) of the field generated over C(T) by
the thetanulls is 2g2 + g.

The system (0.17) can be written in a more compact form if one takes into
consideration the quadratic (in z ∈ Cg) forms

ψa = ψa(z) = tzΨaz, Ψa = (ψa,jk)j,k=1,...,g, a ∈ K∗, (0.18)

δ = δ(z) = tz∆z, ∆ = (δjk)j,k=1,...,g. (0.19)

Of course, δ in (0.19) has sense only when applied to an appropriate object: a
function meromorphic in T ∈ Hg or a quadratic form in z with coefficients that
are T-meromorphic functions (only these cases are of interest for us). We can
define in a natural way the operations of multiplication of quadratic forms by a
T-meromorphic function and of (tensor) multiplication of two quadratic forms —
which produces a homogeneous polynomial of degree 4 in z (a quartic). In this
notation the system (0.17) can be written as an equality of quartics:

ϑ4
a · δψa =

1
2g−2

∑
b∈K∗

(−1)|a,b|ϑ4
b · ψ2

b − 2ϑ4
a · ψ2

a, a ∈ K∗. (0.20)

Despite the symmetry of (0.20), it is only remotely similar to Halphen’s system:
first, the functions involved in (0.20) have plenty of algebraic relations between
them, and second, the singular locus of this system contains the zero loci of all
thetanulls (for information about the latter the reader is advised to address [2];
Chapter 5).

However, it has been shown in [22] and [23] that for g = 2 one can write down
a system similar to (0.7).
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Ohyama’s theorem. Let a1,a2,a3,a4 ∈ Z4/2Z4 be even characteristics located
‘at the vertices of a non-degenerate parallelogram’ (that is, a1 − a2 ≡ a3 − a4

(mod 2Z4)). Then the corresponding functions ψa1 , ψa2 , ψa3 , ψa4 satisfy the differ-
ential equation

δ(ψa1+ψa2+ψa3+ψa4) = (ψa1+ψa2+ψa3+ψa4)2−2(ψ2
a1

+ψ2
a2

+ψ2
a3

+ψ2
a4

). (0.21)

Unfortunately, no system of differential equations for the functions (0.18) similar
to Halphen’s is known so far for g > 2. If g = 3, then our results (see § 6) give one
a system of differential equations in which the δ-derivatives of the functions (0.18)
are expressed as rational functions of these functions, with denominators of degrees
at most 9.

Our exposition is organized as follows. In § 1 we present two proofs of Halphen’s
theorem. Our attention to this result is not accidental: in subsequent sections we
draw an analogy between these proofs and the derivation of systems of differential
equations in the cases g = 2 and g = 3. In § 2 and § 3 we list properties of
multidimensional theta functions necessary for what follows, and in § 4 we prove
Theorem 1. The case g = 2 (but not only it) is discussed in § 5 and § 6, where
among other things we prove Ohyama’s theorem. In § 6 we also discuss the case
g = 3 and the problems of the derivation of systems of differential equations ‘without
denominators’ for the functions (0.18), and in § 7 we present another example of a
system of differential equations, of a distinct ‘structure’ from (0.20). We devote § 8
to modular properties of the functions (0.16) and multidimensional generalizations
of relations (0.8).

The author is grateful to Prof. Yu. V. Nesterenko, who initiated my multidi-
mensional activities in theta functions, for his permanent attention and to Prof.
D. Bertrand, fruitful discussions with whom were not only useful for the present
work, but have also brought us to the joint paper [21]. This work was carried out
as the author was at a post-doctoral position at Institut de Mathématiques, Uni-
versité Paris VI and Centre É. Borel, Institut H. Poincaré, Paris. The author is
obliged to the staff of these institutions for their hospitality and friendly working
ambience. Separate thanks are due to the Ostrowski Fellowship for the sponsorship
of the work.

§ 1. Two proofs of Halphen’s theorem

Heat equation (0.2), which holds for each theta function contains information
about the expansions of the functions (0.1) in power series in z.

Lemma 1. The following expansions hold in the neighbourhood of z = 0:

ϑj(z) = ϑj ·
(

1− 2ψjz2 +
2
3

(ψ2
j + δψj)z4

)
+O(z6), j = 2, 3, 4.

Proof. We write down even theta functions (0.1) as the sums of the first terms of
their Taylor expansions at z = 0:

ϑj(z) = ϑj · (1 + ajz
2 + bjz

4) +O(z6), j = 2, 3, 4,
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where aj = aj(q) and bj = bj(q) are functions of the q-variable; after that we use
heat equation (0.2):

−1
4
ϑ′′j (z) = −1

2
ϑj · (aj + 6bjz2) +O(z4),

δϑj(z) = δϑj + (δϑj · aj + ϑj · δaj)z2 +O(z4),
j = 2, 3, 4;

hence

−1
2
ϑj · (aj + 6bjz2) + o(z2) = δϑj + (δϑj · aj + ϑj · δaj)z2 +O(z4), j = 2, 3, 4.

Dividing both parts by ϑj , j = 2, 3, 4, we obtain

−1
2
aj − 3bjz2 +O(z4) = ψj + (ψjaj + δaj)z2 +O(z4), j = 2, 3, 4.

Comparing the coefficients of similar degrees of z we see that

aj = −2ψj , bj = −1
3

(ψjaj + δaj) =
2
3

(ψ2
j + δψj), j = 2, 3, 4, (1.1)

as required.

Proof of Halphen’s theorem. We shall use only the addition formulae

ϑ2(z + y)ϑ2(z − y)ϑ2
2 = ϑ2

3(z)ϑ2
3(y)− ϑ2

4(z)ϑ2
4(y),

ϑ3(z + y)ϑ3(z − y)ϑ2
3 = ϑ2

2(z)ϑ2
2(y) + ϑ2

4(z)ϑ2
4(y),

ϑ4(z + y)ϑ4(z − y)ϑ2
4 = ϑ2

3(z)ϑ2
3(y)− ϑ2

2(z)ϑ2
2(y)

(1.2)

(see [3]; Chapter I, § 5, Table 3), or more precisely, the duplication formulae

ϑ2(2z)ϑ3
2 = ϑ4

3(z)− ϑ4
4(z), ϑ3(2z)ϑ3

3 = ϑ4
2(z) + ϑ4

4(z),

ϑ4(2z)ϑ3
4 = ϑ4

3(z)− ϑ4
2(z),

(1.3)

which can be deduced from (1.2) by setting y = z.
Taking account of the expansions

ϑj(2z) = ϑj · (1 + 4ajz2 + 16bjz4) + o(z4),

ϑ4
j (z) = ϑ4

j · (1 + 4ajz2 + (6a2
j + 4bj)z4) + o(z4),

j = 2, 3, 4

(the coefficients aj and bj are as defined in (1.1)), we set equal the coefficients of
z0, z2, z4 in duplication formulae (1.3):

ϑ4
2 − ϑ4

3 + ϑ4
4 = 0, ϑ4

2a2 − ϑ4
3a3 + ϑ4

4a4 = 0, (1.4)

16ϑ4
2b2 = ϑ4

3(6a2
3 + 4b3)− ϑ4

4(6a2
4 + 4b4),

16ϑ4
3b3 = ϑ4

2(6a2
2 + 4b2) + ϑ4

4(6a2
4 + 4b4),

16ϑ4
4b4 = ϑ4

3(6a2
3 + 4b3)− ϑ4

2(6a2
2 + 4b2).

(1.5)
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Solving the linear system for equations (1.5) with respect to ϑ4
jbj , j = 2, 3, 4, we

obtain
ϑ4

2b2 =
1
6

(ϑ4
2a

2
2 + 2ϑ4

3a
2
3 − 2ϑ4

4a
2
4),

ϑ4
3b3 =

1
6

(2ϑ4
2a

2
2 + ϑ4

3a
2
3 + 2ϑ4

4a
2
4),

ϑ4
4b4 =

1
6

(−2ϑ4
2a

2
2 + 2ϑ4

3a
2
3 + ϑ4

4a
2
4).

(1.6)

Substituting in (1.6) equalities (1.1) established in Lemma 1 we obtain a system
of differential equations connecting the functions (0.5):

2
3
ϑ4

2(ψ2
2 + δψ2) =

2
3

(ϑ4
2ψ

2
2 + 2ϑ4

3ψ
2
3 − 2ϑ4

4ψ
2
4),

2
3
ϑ4

3(ψ2
3 + δψ3) =

2
3

(2ϑ4
2ψ

2
2 + ϑ4

3ψ
2
3 + 2ϑ4

4ψ
2
4),

2
3
ϑ4

4(ψ2
4 + δψ4) =

2
3

(−2ϑ4
2ψ

2
2 + 2ϑ4

3ψ
2
3 + ϑ4

4ψ
2
4);

hence

δψ2 = 2
(
ϑ4

3

ϑ4
2

ψ2
3 −

ϑ4
4

ϑ4
2

ψ2
4

)
, δψ3 = 2

(
ϑ4

2

ϑ4
3

ψ2
2 +

ϑ4
4

ϑ4
3

ψ2
4

)
, δψ4 = 2

(
ϑ4

3

ϑ4
4

ψ2
3 −

ϑ4
2

ϑ4
4

ψ2
2

)
.

(1.7)
We can now write (1.4) as follows:

ϑ4
2 − ϑ4

3 + ϑ4
4 = 0, ϑ4

2ψ2 − ϑ4
3ψ3 + ϑ4

4ψ4 = 0.

This gives us, in particular, expressions for the ratios of the fourth powers of the
theta functions:

ϑ4
3

ϑ4
2

=
ψ2 − ψ4

ψ3 − ψ4
,

ϑ4
4

ϑ4
2

=
ψ2 − ψ3

ψ3 − ψ4
, (1.8)

which easily allows us to deduce the system (0.7) from (1.7). For example, for the
first equation in (1.7) we have

δψ2 = 2
(
ψ2 − ψ4

ψ3 − ψ4
ψ2

3 −
ψ2 − ψ3

ψ3 − ψ4
ψ2

4

)
= 2

ψ2(ψ2
3 − ψ2

4)− ψ3ψ4(ψ3 − ψ4)
ψ3 − ψ4

= 2(ψ2ψ3 + ψ2ψ4 − ψ3ψ4);

in a similar way we process the second and the third equations in (1.7). To complete
the proof of the theorem we point out again at the equivalence of the systems (0.7)
and (0.6).

We shall now prove identities (0.8). To this end we write (1.8) as follows:

ψ3 − ψ4

ϑ4
2

=
ψ2 − ψ4

ϑ4
3

=
ψ2 − ψ3

ϑ4
4

= κ(q); (1.9)
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we shall use the system of differential equations (0.7) just established and the
relations

δ(ϑ−4
j ) = −4ϑ−5

j · δϑj = −4ϑ−4
j ψj , j = 2, 3, 4,

to prove that κ(q) = const. This is a consequence of the following chain of equali-
ties:

δκ = δ
(
ϑ−4

2 (ψ3 − ψ4)
)

= −ϑ−4
2 (4ψ2(ψ3 − ψ4) + δψ3 − δψ4)

= −2ϑ−4
2

(
2ψ2(ψ3 − ψ4) + (ψ2ψ3 + ψ3ψ4 − ψ2ψ4)− (ψ2ψ4 + ψ3ψ4 − ψ2ψ3)

)
= 0.

Note now that ϑ3 = 1+2q+O(q2), ϑ4 = 1−2q+O(q2), and therefore ψ3 = 2q+O(q2),
ψ4 = −2q +O(q2), and ϑ4

2 = 16q +O(q2); hence

κ =
ψ3 − ψ4

ϑ4
2

=
1
4

+O(q),

that is, κ = 1/4. This proves identities (0.8).

A very simple proof of Halphen’s theorem. The general addition formula for theta
functions yields the relations

ϑ2
j (z)ϑ

2
k(z) =

1
2
(
ϑj(2z)ϑj(0)ϑ2

k(0) + ϑ2
j (0)ϑk(2z)ϑk(0)

)
, j, k = 2, 3, 4, j 6= k

(1.10)
(see [6]; Exercises 1 and 2 to Chapter 21).

By Lemma 1,

ϑ2
j (z)ϑ

2
k(z) = ϑ2

jϑ
2
k ·
(

1− 4(ψj + ψk)z2

+ 16ψjψkz4 +
16
3

(ψ2
j + ψ2

k)z4 +
4
3
δ(ψj + ψk)z4

)
+O(z6),

ϑj(2z)ϑjϑ2
k + ϑ2

jϑk(2z)ϑk
2

= ϑ2
jϑ

2
k ·
(

1− 4(ψj + ψk)z2

+
16
3

(ψ2
j + ψ2

k)z4 +
16
3
δ(ψj + ψk)z4

)
+O(z6),

j, k = 2, 3, 4.

(1.11)
Substituting the expansions (1.11) in identities (1.10) and comparing the coeffi-

cients of z4 we obtain the system of differential equations (0.6).

Remark. Of course, Halphen himself gives in [12] a simple proof of his theorem.
The main advantage of the ‘long’ proof are identities (0.8) obtained on its basis.

§ 2. Expansions of theta functions

Let g be a fixed dimension, let g-dimensional theta functions (with characteris-
tics) be as defined in (0.15), and let K∗ be the set of even characteristics. In this
section we prove the following multidimensional generalization of Lemma 1.
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Lemma 2. The following expansions hold in the neighbourhood of z = 0:

ϑa(z) = ϑa ·
(

1− 2ψa +
2
3
ψ2
a +

2
3
δψa

)
+O(z6), a ∈ K∗,

where the quadratic forms ψa, a ∈ K∗, and δ are defined by (0.18) and (0.19). In
addition,

δjkψa,lm + ψa,jkψa,lm = δjlψa,km + ψa,jlψa,km, δjkψa,lm = δlmψa,jk,
(2.1)

a ∈ K∗, j, k, l,m = 1, . . . , g.

We use the symbol O(zn), n = 0, 1, 2, . . . , to denote the class of functions f(z)
holomorphic at z = 0 with Taylor series starting from power n, that is,

∂m1+···+mgf

∂zm1
1 · · · ∂zmgg

(0) = 0, m1 + · · ·+mg < n.

It is easy to verify that O(zn)+O(zk) = O(zmin{n,k}) and O(zn)·O(zk) = O(zn+k)
(here we use the standard notation for O-symbols).

As in the one-dimensional case, for the proof of Lemma 2 we require a multidi-
mensional analogue of the heat equation for the functions (0.15).

Lemma 3 ([1], Teil 1, Kapitel 1, § 5, Satz XIII). Each function (0.15) satisfies the
differential equations

δjkϑa(z,T) = −1
4

∂2

∂zj ∂zk
ϑa(z,T), j, k = 1, . . . , g, a ∈ Z2g. (2.2)

This can be verified directly for the series (0.15).
The following technical result has no immediate relation to theta functions.

Lemma 4. Let V (z) be a homogeneous polynomial of degree four in the vari-
ables z1, . . . , zg; let Φ = (ϕjk)j,k=1,...,g and Ψ = (ψjk)j,k=1,...,g be symmetric square
matrices. Assume that

∂2V

∂zj ∂zk
= ϕjk · tzΨz, j, k = 1, . . . , g. (2.3)

Then
V (z) =

1
12

(tzΦz)(tzΨz) (2.4)

and
ϕjkψlm = ϕjlψkm = ϕjmψkl = ϕklψjm = ϕkmψjl = ϕlmψjk,

j, k, l,m = 1, . . . , g.
(2.5)

Proof. We represent the polynomial V (z) in the ‘symmetric’ form

V (z) =
g∑

l1,l2,l3,l4=1

vl1l2l3l4zl1zl2zl3zl4 , (2.6)
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where vl1l2l3l4 = vσ(l1l2l3l4) for each permutation σ of the indices l1, l2, l3, l4. Then

∂2V

∂zj ∂zk
=

∂2

∂zj ∂zk

g∑
l1,l2,l3,l4=1

vl1l2l3l4zl1zl2zl3zl4

=
g∑

l3,l4=1

vjkl3l4zl3zl4 +
g∑

l2,l4=1

vjl2kl4zl2zl4 + · · ·+
g∑

l1,l2=1

vl1l2jkzl1zl2

=
g∑

l3,l4=1

(vjkl3l4 + vjl3kl4 + · · ·+ vl3l4jk)zl3zl4 = 12
g∑

l3,l4=1

vjkl3l4zl3zl4 .

Comparing the coefficients of the resulting quadratic forms and the right-hand sides
of (2.3) we obtain

vjkl3l4 =
1
12
ϕjkψl3l4 , j, k, l3, l4 = 1, . . . , g. (2.7)

Hence

V (z) =
1
12

g∑
l1,l2,l3,l4=1

ϕl1l2ψl3l4zl1zl2zl3zl4

=
1
12

( g∑
l1,l2=1

ϕl1l2zl1zl2

)( g∑
l3,l4=1

ψl3l4zl3zl4

)
=

1
12

(tzΦz)(tzΨz),

which proves (2.4). Equalities (2.5) follow by (2.7) and the symmetry of the coeffi-
cients of (2.6).

Proof of Lemma 2. This proof does not depend on the particular even characteris-
tic a, therefore we shall not indicate it by the subscript.

The expansion of an even function in a power series has the following form:

ϑ(z) = ϑ ·
(
1 + U(z) + V (z)

)
+O(z6), ϑ = ϑ(0), (2.8)

where U(z) is a quadratic form (a homogeneous polynomial of degree 2), V (z) is a
quartic (a homogeneous polynomial of degree 4), and the coefficients of these forms
are meromorphic functions of T ∈ Hg.

We apply Lemma 3 to the expansion (2.8). We obtain

δjkϑ(z) = δjkϑ+ δjkϑ · U(z) + ϑ · δjkU(z) +O(z4),

∂2

∂zj ∂zk
ϑ(z) = ϑ ·

(
∂2U(z)
∂zj ∂zk

+
∂2V (z)
∂zj ∂zk

)
+O(z4),

j, k = 1, . . . , g,

therefore (we divide both parts of (2.2) by ϑ)

ψjk + ψjkU(z) + δjkU(z) +O(z4) = −1
4

(
∂2U(z)
∂zj ∂zk

+
∂2V (z)
∂zj ∂zk

)
+O(z4),

j, k = 1, . . . , g.
(2.9)
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Comparing homogeneous components in (2.9) we obtain

∂2U(z)
∂zj ∂zk

= −4ψjk, j, k = 1, . . . , g, (2.10)

∂2V (z)
∂zj ∂zk

= −4
(
ψjkU(z) + δjkU(z)

)
, j, k = 1, . . . , g. (2.11)

Relations (2.10) mean that

U(z) = −2tzΨz = −2ψ. (2.12)

The substitution of (2.12) in (2.11) yields

∂2V (z)
∂zj ∂zk

= 8(ψjk + δjk)tzΨz, j, k = 1, . . . , g,

therefore by Lemma 4,

V (z) =
2
3

(tzΨz)2 +
2
3

(tz∆z)(tzΨz) =
2
3
ψ2 +

2
3
δψ

and

(ψjk + δjk)ψlm = (ψjl + δjl)ψkm = · · · = (ψlm + δlm)ψjk, j, k, l,m = 1, . . . , g.

The proof of Lemma 2 is complete.

§ 3. Riemann relations

This is the formula used in most applications.
D. Mumford

The quotation from [3] prefacing this section relates to the Riemann relations [3];
Chapter II, § 6, which have the following form for the theta functions (0.15):

(−1)
t(c′+d′)a′′ϑa+c+d

(
z1 + z2 + z3 + z4

2

)
ϑa+c

(
z1 + z2 − z3 − z4

2

)
× ϑa+d

(
z1 − z2 + z3 − z4

2

)
ϑa

(
z1 − z2 − z3 + z4

2

)
=

1
2g
∑
b∈K

(−1)|a,b|(−1)
t(c′+d′)b′′ϑb+c+d(z1)ϑb+c(z2)ϑb+d(z3)ϑb(z4),

(3.1)

a, c,d ∈ K = Z
2g/2Z2g

(see [1]; Teil 2, Kapitel VII, § 10, Satz XXXVIII). In fact our main attention in
what follows will be focused on a special case of the Riemann relations:

(−1)
t(c′+d′)a′′ϑa+c+d(z)ϑa+c(z)ϑa+d(z)ϑa(z)

=
1
2g
∑
b∈K

(−1)|a,b|(−1)
t(c′+d′)b′′ϑb+c+d(2z)ϑb+c(0)ϑb+d(0)ϑb(0),

(3.2)
a, c,d ∈ K,

which can be deduced from (3.1) by setting z1 = 2z, z2 = z3 = z4 = 0.
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Lemma 5. For each even characteristic a there holds the identity

ϑ4
a(z) =

1
2g
∑
b∈K∗

(−1)|a,b|ϑb(2z)ϑ3
b(0). (3.3)

Proof. It suffices to set c = d = 0 in (3.2) and to observe that all the terms on the
right-hand side that correspond to odd characteristics are vanishing.

For the symmetric square matrix of order 2g−1(2g + 1) corresponding to rela-
tions (3.3) we introduce the following notation:

M =
1
2g
(
(−1)|a,b|

)
a,b∈K∗

.

To study its properties we require two simple auxiliary results (from the theory of
character sums).

Lemma 6. There hold the identities

∑
b∈K

(−1)|a,b| =
{

22g if a = 0,

0 otherwise,
a ∈ K. (3.4)

Proof. The case a = 0 is trivial: the sum involves 22g terms, each equal to 1.
If a 6= 0 then we choose a characteristic c such that the quantity |a, c| is odd
(it suffices to consider a characteristic with a single one at the jth place, where
aj±g 6= 0) and multiply the sum on the left-hand side of (3.4) by (−1)|a,c| = −1:

−
∑
b∈K

(−1)|a,b| =
∑
b∈K

(−1)|a,b|+|a,c| =
∑
b∈K

(−1)
ta′(b′′+c′′)−t(b′+c′)a′′

=
∑
b∈K

(−1)|a,b+c| =
∑
b∈K

(−1)|a,b| (3.5)

(we change the order of summation b+ c 7→ b). The right-hand and the left-hand
sides of (3.5) have distinct signs, which completes the proof of (3.4).

Lemma 7. There hold the identities

∑
b∈K∗

(−1)|a,b| =
{

2g−1(2g + 1) if a = 0,

(−1)|a| · 2g−1 otherwise,
a ∈ K. (3.6)

Proof. If a = 0, then each term on the left-hand side is equal to 1, so that the sum
is equal to the number of terms. Assume that a 6= 0 and consider the sums

S+ =
∑

b: |b| is even

(−1)|a,b|, S− = −
∑

b: |b| is odd

(−1)|a,b|. (3.7)
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By Lemma 6, S+ − S− = 0, that is, S+ = S−. Note now that

(−1)|a,b| = (−1)
ta′b′′−tb′a′′ = (−1)

t(a′+b′)(a′′+b′′)(−1)
ta′a′′(−1)

tb′b′′

= (−1)|a+b|(−1)|a|(−1)|b|.

Hence (3.7) can be written as follows:

S+ = (−1)|a|
∑

b: |b| is even

(−1)|a+b|, S− = (−1)|a|
∑

b: |b| is odd

(−1)|a+b|.

Consequently,

S+ + S− = (−1)|a|
∑
b∈K

(−1)|a+b| = (−1)|a|
∑
b∈K

(−1)|b|

= (−1)|a|
( ∑
b: |b| is even

1−
∑

b: |b| is odd

1
)

= (−1)|a|
(
2g−1(2g + 1)− 22g + 2g−1(2g + 1)

)
= (−1)|a| · 2g.

Thus, S+ = S− = (−1)|a| · 2g−1, which completes the proof of (3.6).

Lemma 8. The matrix M satisfies the relation

M2 =
1
2

(M + E), (3.8)

where E is the identity matrix of order 2g−1(2g + 1).

Proof. Using Lemma 7 we consider the scalar product of the lines of the matrix M
with indices a and c:

1
22g

∑
b∈K∗

(−1)|a,b| · (−1)|c,b| =
1

22g

∑
b∈K∗

(−1)|a−c,b|

=
{

2−g−1(2g + 1) if a = c,

(−1)|a−c| · 2−g−1 otherwise,

=


1

2g+1
+

1
2

if a = c,

1
2g+1

(−1)|a,c| otherwise.
(3.9)

In view of the symmetry of M (the product of two lines is the same as the product
of a line and the corresponding column) relations (3.9) are equivalent to matrix
identity (3.8).

Corollary. There holds the identity(
M− 1

4
E
)−1

=
16
9

(
M− 1

4
E
)
. (3.10)
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Proof. In fact, by Lemma 8 we obtain(
M− 1

4
E
)2

= M2 − 1
2

M +
1
16
E =

9
16
E,

which yields (3.10).

Remark. We shall use the scheme of the proof of Lemma 8 in what follows; this is
why we prefer to carry it out in detail, without referring to literature for the ready
properties of the matrix M (see, for instance, [24]; § 2).

Since M is a symmetric matrix, it has a diagonal Jordan form. Hence all eigen-
values λ of M satisfy the quadratic equation (cf. (3.8))

λ2 =
1
2

(λ+ 1),

so that λ = 1 or λ = − 1
2 .

Lemma 9. The multiplicities of the eigenvalues λ1 = 1 and λ2 = − 1
2 in the

characteristic polynomial of M are

s1 =
(2g−1 + 1)(2g + 1)

3
and s2 =

(2g − 1)(2g + 1)
3

, (3.11)

respectively.

Proof. This is a simple exercise in linear algebra. If s1 and s2 are the multiplicities
of the zeros λ1 = 1 and λ2 = − 1

2 , respectively (the characteristic polynomial of M
has no other zeros), then s1 + s2 = 2g−1(2g + 1). The trace of a matrix is preserved
by the transition to the Jordan form. The Jordan form of a symmetric matrix M
is a diagonal matrix, with diagonal containing s1 entries equal to λ1 and s2 entries
equal to λ2. Hence tr M = s1λ1 + s2λ2 = s1− 1

2s2. On the other hand the diagonal
entries of M are equal to 2−g, so that tr M = 2−g ·2g−1(2g+1) = 1

2 (2g+1). Solving
the system of differential equations

s1 + s2 = 2g−1(2g + 1), s1 −
1
2
s2 =

1
2

(2g + 1),

we obtain the quantities in (3.11), which completes the proof.

§ 4. Proof of Theorem 1

Using Lemma 2 we can write expansions for the theta functions on the right-hand
and the left-hand sides of the identities from Lemma 5:

ϑ4
a(z) = ϑ4

a ·
(

1− 2ψa +
2
3
ψ2
a +

2
3
δψa

)4

+O(z6)

= ϑ4
a ·
(

1− 8ψa +
80
3
ψ2
a +

8
3
δψa

)
+O(z6), a ∈ K∗,

ϑb(2z) = ϑb ·
(

1− 8ψb +
32
3
ψ2
b +

32
3
δψb

)
+O(z6), b ∈ K∗.

(4.1)
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Substituting (4.1) in (3.3) and comparing homogeneous components of degree 4 of
the resulting expansions we arrive at the formulae

ϑ4
a ·

1
3

(80ψ2
a + 8δψa) =

1
2g
∑
b∈K∗

(−1)|a,b|ϑ4
b ·

1
3

(32ψ2
b + 32δψb), a ∈ K∗. (4.2)

We now write relations (4.2) in the matrix form. To this end we consider the
(column) vectors

X = (ϑ4
a · ψ2

a)a∈K∗ and Y = (ϑ4
a · δψa)a∈K∗ . (4.3)

In the notation (4.3) relations (4.2) take the following form after simplifications:

5
2
X +

1
4
Y = M(X + Y ),

therefore

Y = −
(

M− 1
4
E
)−1(

M− 5
2
E
)
X = −X +

9
4

(
M− 1

4
E
)−1

X

= −X + 4
(

M− 1
4
E
)
X = (4M− 2E)X, (4.4)

where we use Lemma 8 and the corollary to it.
Relation (4.4), upon recalling (4.3), give one the system of differential equa-

tions (0.20). The system (0.17) follows from it and relations (2.1) in Lemma 2.
The proof of Theorem 1 is complete.

§ 5. Further generalization of Theorem 1

Exposing the (not the most simple) proof of Halphen’s theorem we established in
fact the one-dimensional version of Theorem 1 (the system (1.7)) and, in addition,
used relations between thetanulls and the functions (0.18) resulting from the com-
parison of the free terms and the coefficients of the second-order terms. The last
procedure has a multidimensional analogue: we can very well compare the homoge-
neous components of degrees 0 and 2 after the substitution of the expansions (4.1)
in identities (3.3):

ϑ4
a =

1
2g
∑
b∈K0

(−1)|a,b|ϑ4
b, ϑ4

aψa =
1
2g
∑
b∈K0

(−1)|a,b|ϑ4
bψb, a ∈ K0. (5.1)

However, the ensuing expressions for various ratios of thetanulls do not have a
form as simple as (1.8). And what system of equations for the ψ-functions can be
obtained if one uses the scheme of the simple proof of Halphen’s theorem? This is
the question we answer in § 5.

We fix the characteristic c ∈ K, c 6= 0, and return to Riemann relations (3.2),
setting for this occasion d = 0:

(−1)
tc′a′′ϑ2

a+c(z)ϑ2
a(z) =

1
2g
∑
b∈K

(−1)|a,b|(−1)
tc′b′′ϑb+c(2z)ϑb+c(0)ϑ2

b(0),
(5.2)

a ∈ K.
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Note that summation on the right-hand side of (5.2) proceeds now only over the
characteristics b such that b and b + c are even. Associated with a characteristic
c ∈ K\{0} is the subgroup {0, c} ⊂ K of order 2. Elements of the form (a,a+c) of
the quotient group Kc = K/{c} will also be called characteristics; we shall identify
them with an arbitrary member of the corresponding pair. Only characteristics with
both a and a+c even are themselves even. We denote the set of even characteristics
in the group Kc by K∗c. In what follows, selecting and fixing one representative in
each pair (a,a+c) ∈ Kc we shall identify the group Kc and its subset K∗c with some
subsets of K.

Setting

θa(z) = i
tc′a′′ϑa+c(z)ϑa(z),

θ̃a(z) = i
tc′a′′ 1

2
(
ϑa+c(2z)ϑa(0) + ϑa+c(0)ϑa(2z)

)
,

θa = θa(0) = θ̃a(0),
(5.3)

a ∈ K∗c,

and collecting the terms corresponding to the characteristics b and b + c, we can
write (5.2) as follows:

θ2
a(z) =

1
2g−1

∑
b∈K∗c

(−1)|a,b|θ̃b(z)θb, a ∈ K∗c. (5.4)

Alongside (5.4) we require another, ‘degenerate’ special case of the Riemann rela-
tions:

θa(z)θa =
1

2g−1

∑
b∈K∗c

(−1)|a,b|θb(z)θb, a ∈ K∗c, (5.5)

which can be obtained by setting d = 0, z1 = z3 = z, z2 = z4 = 0 in (3.1) and
collecting the terms on the right-hand side corresponding to the characteristics b
and b+ c.

As in the preamble to the proof of Theorem 1, we now study the properties of
the symmetric matrix

M = Mc =
1

2g−1

(
(−1)|a,b|

)
a,b∈K∗c

(of yet unknown size) corresponding to identities (5.4) and (5.5).
First of all, we calculate several auxiliary sums.

Lemma 10. There hold the identities∑
b∈K∗:b+c∈K∗

(−1)|a,b| = (−1)|a| ·
{

2g−1(2g−1 + 1) if a = 0 or a = c,

((−1)|a,c| + 1) · 2g−2 otherwise,

a ∈ K. (5.6)

Proof. For a fixed characteristic a ∈ K let S+ be the sum on the right-hand side
of (5.6); in addition, we consider the sum

S− = −
∑

b∈K∗:b+c/∈K∗

(−1)|a,b|.
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By Lemma 7,

S+ − S− = (−1)|a| ·
{

2g−1(2g + 1) if a = 0,

2g−1 otherwise.
(5.7)

Since
(−1)|a,b| = (−1)|c|(−1)|b|(−1)|b+c|(−1)|a+c,b|,

the sums S+ and S− can be written as follows:

S+ = (−1)|c|
∑

b∈K∗:b+c∈K∗

(−1)|a+c,b|, S− = (−1)|c|
∑

b∈K∗:b+c/∈K∗

(−1)|a+c,b|.

Hence

S+ + S− = (−1)|c|
∑
b∈K∗

(−1)|a+c,b|

= (−1)|c| ·
{

2g−1(2g + 1) if a = c,

(−1)|a+c| · 2g−1 otherwise,
(5.8)

where we use Lemma 7 again.
Adding equalities (5.7) and (5.8) we see that S+ is equal to the right-hand side

of (5.6), which completes the proof.

Corollary. The set K∗c consists of 2g−2(2g−1 + 1) elements.

Proof. We consider identity (5.6) for a = 0 and obtain on its right-hand side the
number of elements of the set {b ∈ K∗ : b + c ∈ K∗}. It remains to divide this
quantity by 2.

Lemma 11. The matrix M = Mc satisfies the relation

M2 =
1
2

(M + E),

where E is the identity matrix of size 2g−2(2g−1 + 1).

Proof. Using Lemma 10 we consider the scalar product of the columns of the
matrix M with indices a,d ∈ K∗c (the case a + c ≡ d (mod 2Z2g) is impossible
by the definition of K∗c !):∑

b∈K∗c

1
2g−1

(−1)|a,b| · 1
2g−1

(−1)|d,b| =
1

22g−1

∑
b∈K∗:b+c∈K∗

(−1)|a+d,b|

=
1

22g−1
·
{

2g−1(2g−1 + 1) if a = d,

(−1)|a+d| · 2g−1 otherwise,

=
1
2
·


1

2g−1
+

1
2

if a = d,

1
2g−1

(−1)|a,d| otherwise.

Taking account of the symmetry of M (the product of two lines is equal to the
product of a line and the corresponding column) one establishes the result of the
lemma.
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Corollary 1. There holds the identity(
M− 1

4
E
)−1

=
16
9

(
M− 1

4
E
)
.

Proof. This can be proved in the same way as the corollary to Lemma 8.

Corollary 2. The matrix

(M− E)
(

M +
1
2
E
)

is equal to zero.

Proof. This expression is a representation of M2− 1
2 (M +E) as a product of linear

factors.

Now, following the earlier pattern, one should consider the multiplicities of the
eigenvalues 1 and − 1

2 in the characteristic polynomial of M. We leave this to the
reader as a simple (especially so after the proof of Lemma 9) exercise.

Theorem 2. For a fixed characteristic c ∈ K, c 6= 0, and for the corresponding
set K∗c the functions (0.18) satisfy the system of differential equations

ϑ2
a+cϑ

2
aδ(ψa+c + ψa)

=
1

2g−2

∑
b∈K∗c

(−1)|a,b|(−1)
tc′(a′′+b′′)ϑ2

b+cϑ
2
b(ψb+c + ψb)2

+ 4ϑ2
a+cϑ

2
aψa+cψa − 2ϑ2

a+cϑ
2
a(ψa+c + ψa)2, a ∈ K∗c. (5.9)

In addition, the thetanulls and the functions (0.18) are connected by the relations

ϑ2
a+cϑ

2
a =

1
2g−1

∑
b∈K∗c

(−1)|a,b|(−1)
tc′(a′′+b′′)ϑ2

b+cϑ
2
b, a ∈ K∗c,

(5.10)

ϑ2
a+cϑ

2
a(ψa+c + ψa) =

1
2g−1

∑
b∈K∗c

(−1)|a,b|(−1)
tc′(a′′+b′′)ϑ2

b+cϑ
2
b(ψb+c + ψb),

(5.11)

a ∈ K∗c.

Proof. By Lemma 2 we obtain

θa(z) = i
tc′a′′ϑa+c(z)ϑa(z) = θa ·

(
1− 2(ψa+c + ψa)

+
8
3
ψa+cψa +

2
3

(ψa+c + ψa)2 +
2
3
δ(ψa+c + ψa)

)
+O(z6),

θ2
a(z) = (−1)

tc′a′′ϑ2
a+c(z)ϑ2

a(z) = θ2
a ·
(

1− 4(ψa+c + ψa)

+
16
3
ψa+cψa +

16
3

(ψa+c + ψa)2 +
4
3
δ(ψa+c + ψa)

)
+O(z6),

θ̃a(z) = i
tc′a′′ 1

2
(
ϑa+c(2z)ϑa + ϑa+cϑa(2z)

)
= θa ·

(
1− 4(ψa+c + ψa)

− 32
3
ψa+cψa +

16
3

(ψa+c + ψa)2 +
16
3
δ(ψa+c + ψa)

)
+O(z6),

(5.12)

a ∈ K∗c.
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Taking account of the equality θ2
a = (−1)

tc′a′′ϑ2
a+cϑ

2
a, a ∈ K∗c, substituting (5.12)

in identities (5.4) and (5.5) and comparing the homogeneous components of degrees
0, 2, and 4, we obtain relations (5.10), (5.11), and

θ2
a

(
4ψa+cψa + 4(ψa+c + ψa)2 + δ(ψa+c + ψa)

)
=

1
2g−1

∑
b∈K∗c

(−1)|a,b| · 4θ2
b

(
−2ψb+cψb + (ψb+c + ψb)2 + δ(ψb+c + ψb)

)
,

θ2
a

(
4ψa+cψa + (ψa+c + ψa)2 + δ(ψa+c + ψa)

)
=

1
2g−1

∑
b∈K∗c

(−1)|a,b|θ2
b

(
4ψb+cψb + (ψb+c + ψb)2 + δ(ψb+c + ψb)

)
,

(5.13)

a ∈ K∗c,

respectively. By analogy with the proof of Theorem 1 we consider now the (column)
vectors

W = (θ2
aψa+cψa)a∈K∗c , X =

(
θ2
a(ψa+c + ψa)2

)
a∈K∗c

,

Y =
(
θ2
aδ(ψa+c + ψa)

)
a∈K∗c

.

Written in the matrix form relations (5.13) yield

4W + 4X + Y = 4M(−2W +X + Y ), (5.14)

4W +X + Y = M(4W +X + Y ). (5.15)

By (5.14) we obtain(
M− 1

4
E
)
Y = 2

(
M +

1
2
E
)
W − (M− E)X.

From Lemma 11 and Corollary 1 to it we see that

Y =
8
3

(
M +

1
2
E
)
W +

4
3

(M− E)X. (5.16)

Since

δ
(
θ2
a(ψa+c + ψa)

)
= 2θ2

a(ψa+c + ψa)2 + θ2
aδ(ψa+c + ψa), a ∈ K∗c,

δ-differentiation of relations (5.11) brings us to the matrix relation

2X + Y = M(2X + Y ).

Subtracting it from (5.15) we obtain

4W −X = M(4W −X), (5.17)

therefore(
M +

1
2
E
)
W =

1
4

M(4W −X) +
1
2
W +

1
4

MX =
1
4

(4W −X) +
1
2
W +

1
4

MX

=
3
2
W +

1
4

(M− E)X. (5.18)
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Substituting (5.18) in (5.16) we obtain

Y = 4W + 2(M− E)X, (5.19)

which corresponds precisely to the system (5.9). The proof is complete.

Remark. Of course, the system of differential equations (5.9) can be written on the
basis of (2.1) in a ‘customized form’ for the functions (0.16). However, we content
ourselves with the customization (0.17) of Theorem 1.

Proof of Ohyama’s theorem. We demonstrate now that for g = 2 Theorem 2 yields
Ohyama’s theorem. We fix an arbitrary characteristic c ∈ Z4/2Z4, c 6= 0. The
corresponding set K∗c consists of three elements, which we denote by a1,a2,a3; for
convenience, we order these elements so that the first line of the matrix M = Mc

contains only positive integers:

M =
1
2

 1 1 1
1 1 −1
1 −1 1

 . (5.20)

Setting

θj = θaj , Sj = ψaj+c + ψaj , Pj = ψaj+cψaj , j = 1, 2, 3,

we write the system of differential equation (5.9) (or (5.19)) in the following form:

θ2
1δS1 = 4θ2

1P1 − (θ1
1S

2
1 − θ2

2S
2
2 − θ2

3S
2
3),

θ2
2δS2 = 4θ2

2P2 + (θ2
1S

2
1 − θ2

2S
2
2 − θ2

3S
2
3),

θ2
3δS3 = 4θ2

3P3 + (θ2
1S

2
1 − θ2

2S
2
2 − θ2

3S
2
3).

(5.21)

Relations (5.10) and (5.11) now look as follows:

θ2
1 − θ2

2 − θ2
3 = 0, θ2

1S1 − θ2
2S2 − θ2

3S3 = 0,

therefore
S2 − S3

θ2
1

=
S1 − S3

θ2
2

=
S2 − S1

θ2
3

, (5.22)

so that

θ2
1S

2
1 − θ2

2S
2
2 − θ2

3S
2
3 = θ2

1(S1 − S2)(S1 − S3)

= −θ2
2(S2 − S1)(S2 − S3)

= −θ2
3(S3 − S1)(S3 − S2). (5.23)

Substituting (5.23) in equations (5.21) and canceling out thetanulls we obtain the
system

δS1 = 4P1 − (S1 − S2)(S1 − S3),

δS2 = 4P2 − (S2 − S1)(S2 − S3),

δS3 = 4P3 − (S3 − S1)(S3 − S2).
(5.24)
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In our notation one can deduce Ohyama’s system (0.21) from (5.24) by the addition
of two arbitrary equations:

δ(S1 + S2) = 4P1 + 4P2 − (S1 − S2)2,

δ(S1 + S3) = 4P1 + 4P3 − (S1 − S3)2,

δ(S2 + S3) = 4P2 + 4P3 − (S2 − S3)2,

because every two of the three pairs {a1,a1 + c}, {a2,a2 + c}, and {a3,a3 + c}
give one the system of vertices of a parallelogram.

Thus, for g = 2 Ohyama’s theorem is a consequence of Theorem 2. Note that this
method of the proof of (0.21) is distinct from the original method of [22] and [23],
which we expose in the next section.

What can one say about the quantity (5.22), a two-dimensional analogue of (1.9)?
Denoting it by κ = κc, differentiating its first definition in (5.22), and taking
account of (5.24) we obtain

δκ =
δS2 − δS3 − 2S1(S2 − S3)

θ2
1

=
(4P2 − S2

2)− (4P3 − S2
3)

θ2
1

.

Carrying out similar differentiation for the second and the third definitions we
conclude that

δκ =
(4P1 − S2

1)− (4P3 − S2
3)

θ2
2

=
(4P2 − S2

2)− (4P1 − S2
1)

θ2
3

. (5.25)

The fact that the quantities in (5.25) are equal is also, similarly to our derivation
of (5.22), a consequence of the equality

θ2
1(4P1 − S2

1)− θ2
2(4P2 − S2

2)− θ2
3(4P3 − S2

3) = 0,

which we established in the proof of Theorem 2 (see (5.17)). Note that

4Pj − S2
j = −(ψaj+c − ψaj )2,

therefore the quantity (5.25) is distinct from zero (for otherwise the four theta-
nulls are related by the equality ϑ1ϑ2 = const ·ϑ3ϑ4, which is impossible). For
δ-differentiation (5.25) we must abandon our ‘cozy nook’ of six functions and enter
the ‘large world’ of the ten functions (0.18). Wary of boring the reader by lengthy
calculations we present the final result:

δ2
κ =

2(4P2 − S2
2)(Σ− 2S2 − 2S1)− 2(4P3 − S2

3)(Σ− 2S3 − 2S1)
θ2

1

=
2(4P1 − S2

1)(Σ− 2S1 − 2S2)− 2(4P3 − S2
3)(Σ− 2S3 − 2S2)

θ2
2

=
2(4P2 − S2

2)(Σ− 2S2 − 2S3)− 2(4P1 − S2
1)(Σ− 2S1 − 2S3)

θ2
3

, (5.26)

where Σ is the sum of all 10 (in the case g = 2) functions (0.18). The quantity (5.26)
is also distinct from zero in general. We interrupt here the procedure of differenti-
ation of κ and return to the generalization of identities (0.8) for g = 2 and g = 3
in § 8.
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§ 6. Forwards to new differential equations

We were far from exhausting all the resources of the Riemann relations in our
proofs of Theorems 1 and 2; we wish to make up for this in the present section: the
object of our study here are identities (3.2). To avoid cumbersome calculations we
shall rely upon the scheme tried in § 3 and § 5.

Summation on the right-hand side of (3.2) proceeds only over the characteristics
b ∈ K such that

b, b+ c, b+ d ∈ K∗. (6.1)

We now fix two characteristics

c,d ∈ K, c 6= d, c 6= 0, d 6= 0, (6.2)

satisfying the additional condition

|c,d| ≡ 0 (mod 2). (6.3)

Since
(−1)|b+c+d| = (−1)|c,d|(−1)|b|(−1)|b+c|(−1)|b+d|,

it follows by (6.1) and (6.3) that b + c + d ∈ K∗. As in § 5, we shall identify
the quotient group Kc,d = K/{0, c,d, c + d} (and its subsets) and subsets of K

by picking one element in each coset. The set of even characteristics K∗c,d ⊂ Kc,d
consists of the cosets such that (6.1) holds (and therefore also b+ c+ d ∈ K∗).

Setting now

θa(z) = (−1)
t(c′+d′)a′′ϑa+c+d(z)ϑa+c(z)ϑa+d(z)ϑa(z),

θ̃a(z) = θa(0) · 1
4

(
ϑa+c+d(2z)
ϑa+c+d(0)

+
ϑa+c(2z)
ϑa+c(0)

+
ϑa+d(2z)
ϑa+d(0)

+
ϑa(2z)
ϑa(0)

)
,

a ∈ K∗c,d,

we can write (3.2) as follows:

θa(z) =
1

2g−2

∑
b∈K∗c,d

(−1)|a,b|θ̃b(z), a ∈ K∗c,d. (6.4)

In fact, the consistency of (6.4) (the independence of the sum of one’s choice of
representatives of cosets in Kc,d) is a consequence of the relation

ϑa+2e(z) = (−1)
ta′e′′ϑa(z), a, e ∈ Z2g (6.5)

(see [1]; Teil 2, Kapitel 7, § 1). Hence it is an easy verification that if conditions (6.1)
and (6.6) are fulfilled, then the quantity (−1)|a,b|θ̃b(z) is preserved by the replace-
ment of b by b+ c, b+ d, or b+ c+ d.
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As in the proofs of Lemmas 8 and 11 we can show that the symmetric square
matrix

M = Mc,d =
1

2g−2

(
(−1)|a,b|

)
a,b∈K∗c,d

corresponding to relations (6.4) satisfies the equality

M2 =
1
2

(M + E)

and the set K∗c,d consists of 2g−3(2g−2 + 1) elements.
For the simplicity of notation we set

θa = θa(0) = (−1)
t(c′+d′)a′′ϑa+c+dϑa+cϑa+dϑa,

Sa = ψa+c+d + ψa+c + ψa+d + ψa,

Pa =
1
2

(S2
a − ψ2

a+c+d − ψ2
a+c − ψ2

a+d − ψ2
a),

a ∈ K∗c,d. (6.6)

Theorem 3. Assume that the characteristics (6.2) satisfy additional condition
(6.3) and let K∗c,d be the corresponding set of even characteristics. Then there
the following system of differential equations holds in the notation (6.6):

θaδSa =
1

3 · 2g−5

∑
b∈K∗c,d

(−1)|a,b|θbPb +
4
3
θaPa − θaS2

a, a ∈ K∗c,d, (6.7)

and in addition,

θa =
1

2g−2

∑
b∈K∗c,d

(−1)|a,b|θb, a ∈ K∗c,d,

θaSa =
1

2g−2

∑
b∈K∗c,d

(−1)|a,b|θbSb, a ∈ K∗c,d.

(6.8)

Proof. By Lemma 2 we obtain

θa(z) = θ ·
(

1− 2Sa + 4Pa +
2
3

(S2
a − 2Pa) +

2
3
δSa

)
+O(z6),

θ̃a(z) = θ ·
(

1− 2Sa +
8
3

(S2
a − 2Pa) +

8
3
δSa

)
+O(z6),

a ∈ K∗c,d.

(6.9)
Substituting the expansions (6.9) in (6.4) and comparing the coefficients of the
homogeneous (in z) components of degrees 0, 2, and 4 we obtain relations (6.8)
and the equality

θa

(8
3
Pa +

2
3
S2
a +

2
3
δSa

)
=

1
2g−2

∑
b∈K∗c,d

(−1)|a,b|θb
(
−16

3
Pb +

8
3
S2
b +

8
3
δSb

)
,

a ∈ K∗c,d. (6.10)
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Setting

W = (θaPa)a∈K∗c,d
, X = (θaS2

a)a∈K∗c,d
, Y = (θaδSa)a∈K∗c,d

and writing (6.10) in the matrix form:

8
3
W +

2
3
X +

2
3
Y = −16

3
MW +

8
3

MX +
8
3

MY ,

we see that (
M− 1

4
E
)

(X + Y ) = 2
(

M +
1
2
E
)
W ,

therefore
Y =

8
3

(
M +

1
2
E
)
W −X. (6.11)

The return to the earlier notation in (6.11) completes the proof.

One ‘deficiency’ of (6.7) is the following feature: the sum on the right-hand
side contains sums of pairwise products of functions (0.18) (cf. the systems (0.20)
and (5.9)). It is this feature that obstructs the derivation in the case g = 3 of a
system without denominators, similarly to the proofs of Halphen’s and Ohyama’s
theorems. Unfortunately, using other special cases of the Riemann relations one
can improve upon the system (6.7) only superficially, distorting its inner symmetry.

If g = 2 then the set K∗c,d consists of a single element, therefore the matrix M is
a scalar: M = 1. Hence all theta-coefficients in equations (6.7) cancel out and we
obtain (0.21):

δSa = 4Pa − S2
a. (6.12)

This gives us yet another proof of Ohyama’s theorem.
We demonstrate now how, for g = 2, one can derive from the system (0.21)

differential equations for each function (0.18). Associating with the pairs (0, 0),
(0, 1), (1, 0), and (1, 1) the integers 0, 1, 2, and 3, respectively, we shall express
a characteristic a = (a′,a′′) ∈ Z4/2Z4 as a pair of integers, the first of which
corresponds to a′ and the second to a′′.

For g = 2,
K∗ = {00, 01, 02, 03, 10, 12, 20, 21, 30, 33}.

It is an easy calculation that for various choices of the characteristics (6.2) one can
obtain precisely 15 distinct equations of the form (6.12), which correspond to the
collections of characteristics

{00, 01, 02, 03}, {00, 01, 20, 21}, {02, 03, 20, 21}, {00, 02, 10, 12}, {01, 03, 10, 12},
{00, 03, 30, 33}, {01, 02, 30, 33}, {00, 10, 20, 30}, {02, 12, 20, 30}, {01, 10, 21, 30},
{03, 12, 21, 30}, {00, 12, 21, 33}, {02, 10, 21, 33}, {01, 12, 20, 33}, {03, 10, 20, 33};

moreover, each of the 10 thetanulls is involved in precisely 6 of them. Summing all
these equations we obtain

δ
∑
a∈K∗

ψa = −
∑
a∈K∗

ψ2
a +

1
3

∑
a,b∈K∗

a 6=b

ψaψb. (6.13)
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Each characteristic a0 ∈ K∗ can be grouped together with the remaining 9 even
characteristics into three ‘parallelograms’:

a0,a1,a2,a3, a0,a4,a5,a6, a0,a7,a8,a9 (6.14)

(note that there exist just two ways to form such quadruples). Each quadruple
in (6.14) satisfies equation (6.12). Adding these equations we obtain

2δψa0 + δ
∑
a∈K∗

ψa

= −2ψ2
a0
−
∑
a∈K∗

ψ2
a + 2ψa0

∑
a∈K∗

a 6=a0

ψa + 2(ψa1ψa2 + ψa1ψa3 + ψa2ψa3)

+ 2(ψa4ψa5 + ψa4ψa6 + ψa5ψa6) + 2(ψa7ψa8 + ψa7ψa9 + ψa8ψa9).
(6.15)

Now, subtracting equation (6.13) from (6.15) we see that

δψa0 = −ψ2
a0

+ ψa0

∑
a∈K∗

a 6=a0

ψa −
1
6

∑
a,b∈K∗

a 6=b

ψaψb + (ψa1ψa2 + ψa1ψa3 + ψa2ψa3)

+ (ψa4ψa5 + ψa4ψa6 + ψa5ψa6) + (ψa7ψa8 + ψa7ψa9 + ψa8ψa9)

= −2ψ2
a0
− 1

3
(ψ2
a0

+ ψ2
a1

+ · · ·+ ψ2
a9

)− 1
6

(ψa0 + ψa1 + · · ·+ ψa9)2

+
1
2

(ψa0 + ψa1 + ψa2 + ψa3)2 +
1
2

(ψa0 + ψa4 + ψa5 + ψa6)2

+
1
2

(ψa0 + ψa7 + ψa8 + ψa9)2. (6.16)

To complete the ‘customization’ of Ohyama’s system of equations we present here
all possible partitionings into quadruples (6.14) for each even characteristic a0:

a0 {a0,a1,a2,a3} {a0,a4,a5,a6} {a0,a7,a8,a9}

00 {00, 01, 02, 03} {00, 10, 20, 30} {00, 12, 21, 33}
{00, 01, 20, 21} {00, 02, 10, 12} {00, 03, 30, 33}

01 {00, 01, 02, 03} {01, 10, 21, 30} {01, 12, 20, 33}
{00, 01, 20, 21} {01, 03, 10, 12} {01, 02, 30, 33}

02 {00, 01, 02, 03} {02, 12, 20, 30} {02, 10, 21, 33}
{02, 03, 20, 21} {00, 02, 10, 12} {01, 02, 30, 33}

03 {00, 01, 02, 03} {03, 12, 21, 30} {03, 10, 20, 33}
{02, 03, 20, 21} {01, 03, 10, 12} {00, 03, 30, 33}

10 {00, 02, 10, 12} {01, 10, 21, 30} {03, 10, 20, 33}
{01, 03, 10, 12} {00, 10, 20, 30} {02, 10, 21, 33}
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12 {00, 02, 10, 12} {03, 12, 21, 30} {01, 12, 20, 33}
{01, 03, 10, 12} {02, 12, 20, 30} {00, 12, 21, 33}

20 {00, 01, 20, 21} {02, 12, 20, 30} {03, 10, 20, 33}
{02, 03, 20, 21} {00, 10, 20, 30} {01, 12, 20, 33}

21 {00, 01, 20, 21} {03, 12, 21, 30} {02, 10, 21, 33}
{02, 03, 20, 21} {01, 10, 21, 30} {00, 12, 21, 33}

30 {00, 03, 30, 33} {02, 12, 20, 30} {01, 10, 21, 30}
{01, 02, 30, 33} {00, 10, 20, 30} {03, 12, 21, 30}

33 {00, 03, 30, 33} {02, 10, 21, 33} {01, 12, 20, 33}
{01, 02, 30, 33} {00, 12, 21, 33} {03, 10, 20, 33}

Each partitioning into quadruples (6.14) gives rise to an equation (6.16), and for
each even characteristic a0 the choice of partitionings can be made in two ways.
Hence equations (6.16) produce 10 quadratic relations of the form

(ψa1 + ψa2 + ψa3)2 + (ψa4 + ψa5 + ψa6)2 + (ψa7 + ψa8 + ψa9)2

= (ψa∗1 + ψa∗2 + ψa∗3 )2 + (ψa∗4 + ψa∗5 + ψa∗6 )2 + (ψa∗7 + ψa∗8 + ψa∗9 )2

(we denote by asterisks elements from the second partitioning). Calculations show
(see also [22]; Proposition 4.1) that for g = 2 the ideal I of the ring Q[xa]a∈K∗

generated (in accordance with the above table) by ten homogeneous polynomials
of the second degree

ya0 = (xa1 + xa2 + xa3)2 + (xa4 + xa5 + xa6)2 + (xa7 + xa8 + xa9)2

− (xa∗1 + xa∗2 + xa∗3 )2 − (xa∗4 + xa∗5 + xa∗6 )2 − (xa∗7 + xa∗8 + xa∗9 )2, a0 ∈ K∗,

has dimension 6.
In fact, using the two partitioning into parallelograms one can write the sys-

tem (6.16) in the following compact form:

δψa = −2ψ2
a −

1
3

∑
b∈K∗

ψ2
b −

1
6

(∑
b∈K∗

ψb

)2

+
1
4

∑
G3a

(∑
b∈G

ψb

)2

, a ∈ K∗, (6.17)

where summation
∑

G3a proceeds over all six parallelograms containing the char-
acteristic a ∈ K∗.

Theorem 4. Let g = 3 and let K∗c,d = {a1,a2,a3} be the set corresponding to
a fixed pair of characteristics (6.2) satisfying (6.3). Then the following system of
differential equations holds in the notation (6.6):

δSa1 = 4Pa1 − S2
a1
− 4

3
(Sa2 − Sa3)Pa1 + (Sa3 − Sa1)Pa2 + (Sa1 − Sa2)Pa3

Sa2 − Sa3

,

δSa2 = 4Pa2 − S2
a2
− 4

3
(Sa2 − Sa3)Pa1 + (Sa3 − Sa1)Pa2 + (Sa1 − Sa2)Pa3

Sa3 − Sa1

,

δSa3 = 4Pa3 − S2
a3
− 4

3
(Sa2 − Sa3)Pa1 + (Sa3 − Sa1)Pa2 + (Sa1 − Sa2)Pa3

Sa1 − Sa2

.

(6.18)
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Proof. Simple calculations show that if g = 3 then the set K∗c,d consists of three
elements. Without loss of generality we can assume that the elements a1,a2,a3

are ordered so that the matrix M = Mc,d has the form (5.20). By Theorem 3 we
now obtain the system of differential equations

θa1δSa1 = 4θa1Pa1 − θa1S
2
a1
− 4

3
(θa1Pa1 − θa2Pa2 − θa3Pa3),

θa2δSa2 = 4θa2Pa2 − θa2S
2
a2

+
4
3

(θa1Pa1 − θa2Pa2 − θa3Pa3),

θa3δSa3 = 4θa3Pa3 − θa3S
2
a3

+
4
3

(θa1Pa1 − θa2Pa2 − θa3Pa3);

(6.19)

relations (6.8) can be transformed in this case to the following form:

Sa2 − Sa3

θa1

=
Sa1 − Sa3

θa2

=
Sa2 − Sa1

θa3

. (6.20)

Relations (6.20) show that

θa1Pa1 − θa2Pa2 − θa3Pa3

= θa1

(Sa2 − Sa3)Pa1 + (Sa3 − Sa1)Pa2 + (Sa1 − Sa2)Pa3

Sa2 − Sa3

= −θa2

(Sa2 − Sa3)Pa1 + (Sa3 − Sa1)Pa2 + (Sa1 − Sa2)Pa3

Sa3 − Sa1

= −θa3

(Sa2 − Sa3)Pa1 + (Sa3 − Sa1)Pa2 + (Sa1 − Sa2)Pa3

Sa1 − Sa2

.
(6.21)

Dividing both parts of (6.19) by appropriate thetanulls and using (6.21) we obtain
the system of differential equations (6.18). The proof is complete.

Without enlarging on differential equations for each function (0.18) in the case
g = 3 we indicate a method of their derivation from (6.18). Fixing the pair of
even characteristics a1,a2 and the corresponding characteristic c = a2 − a1 in the
pair (6.2) we consider even characteristics a3, a4 = a3 + c and a5, a6 = a5 + c.
Each of the quadruples

{a1,a2,a3,a4}, {a1,a2,a5,a6}, {a3,a4,a5,a6}

corresponds to the vertices of a parallelogram, so that the system (6.18) enables us
to write down differential equations for the quantities

δ(ψa1 +ψa2 +ψa3 +ψa4), δ(ψa1 +ψa2 +ψa5 +ψa6), δ(ψa3 +ψa4 +ψa5 +ψa6),

which bring us to differential equations for δ(ψa1 + ψa2) and δ(ψa3 + ψa4) with
denominator of degree 3. In particular, we obtain an equation for

δ(2ψa1 + 2ψa2 − ψa3 − ψa4) (6.22)
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with the same denominator on the right-hand side. In a similar way we deduce
equations for

δ(2ψa1 + 2ψa3 − ψa2 − ψa4), δ(2ψa1 + 2ψa4 − ψa2 − ψa3), (6.23)

each with denominator of degree 3 (depending on the equation). Adding these dif-
ferential equations for the quantities in (6.22) and (6.23) we obtain an equation for
δψa1 with denominator of degree 9 on the right-hand side. Of course, the freedom
in our choice of a2,a3,a5, . . . means that we can obtain several equations for the
function ψa1 , which gives us many algebraic relations between the functions (0.18).
Recall, however, that there exist 36 even characteristics for g = 3; for this reason
the combinatorial problem of the description of all these algebraic relations lies
beyond the scope of this work.

§ 7. Systems of characteristics and theta-relations

In this section we perform an audit of the special cases of Riemann relations (3.1)
encountered before. First of all, we give legal status to additive systems of charac-
teristics, of which a special case in dimension g = 2 we have called a parallelogram.

Characteristics a, b ∈ K = Z
2g/2Z2g are said to be syzygetic if |a, b| is an even

integer. For a pair of syzygetic characteristics we can define the quantity ab = ta′b′′

(mod 2); since ab + ba ≡ |a, b| (mod 2), it follows that ab = ba. In addition,
aa = |a|.

By an additive group of characteristics A ⊂ K we mean an additive subgroup
of K with pairwise syzygetic elements. In such a group one can find l basic vectors
a1, . . . ,al (in more than one way) such that A={α1a1+· · ·+αlal : α1, . . . , αl=0, 1};
in that case (−1)|aj ,ak| = 1 for all j, k = 1, . . . , l. The number of elements of the
additive group A is 2l, we call l its dimension and write dim A = l. We point out
straight away that dim A 6 g (see [1]; Teil 2, Kapitel 7, § 8). The above-defined
commutative operation of multiplication of syzygetic characteristics is distributive
over addition in the additive group A.

An additive system of characteristics G is a set of even characteristics such
that their various pairwise sums make up an additive group; such a system can
be represented in the form G = a + A ⊂ K∗, where a is an arbitrary element
of G and A is the corresponding (uniquely defined) additive group. The dimension
of an additive system is by definition the dimension of the corresponding additive
group (dim G = dim A), and its cardinality is 2dim G. Each even characteristic is
an additive system of dimension 0. An additive system of maximum dimension g is
called a Göpel system; examples of such systems in dimension g = 2 were discovered
in connection with Ohyama’s theorem.

Lemma 12. The number of additive systems of dimension l 6 g in Z2g/2Z2g is

2g−l−1(2g−l + 1) · (22g − 1)(22g−2 − 1) · · · (22(g−l+1) − 1)
(2l − 1)(2l−1 − 1) · · · (2− 1)

.

In particular, the number of Göpel systems is

(22g − 1)(22g−2 − 1) · · · (22 − 1)
(2g − 1)(2g−1 − 1) · · · (2− 1)

= (2g + 1)(2g−1 + 1) · · · (2 + 1).
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Proof. This is in effect a purely combinatorial fact: the number of additive groups
of characteristics of dimension l in K is

(22g − 1)(22g−2 − 1) · · · (22(g−l+1) − 1)
(2l − 1)(2l−1 − 1) · · · (2− 1)

(see [1]; Teil 2, Kapitel 7, § 8). For such a group A the quotient group K/A is
isomorphic to Z2g−2l/2Z2g−2l, therefore the number of the corresponding additive
systems is equal to the number of even characteristics in the last group, which is
2g−l−1(2g−l + 1). This completes the proof.

Corollary. The number of additive systems of dimension l 6 g in Z2g/2Z2g con-
taining a fixed even characteristic a is

(2g−l + 1)(2g − 1) · (22g−2 − 1) · · · (22(g−l+1) − 1)
(2l − 1)(2l−1 − 1) · · · (2− 1)

.

Proof. We point out first that the number κa of additive systems in question does
not depend on one’s choice of a ∈ K∗. Since the cardinality of K∗ is 2g−1(2g + 1)
and each additive system consists of 2l characteristics, it follows that

κa =
2l · κ

2g−1(2g + 1)
=

κ

2g−l−1(2g + 1)
, a ∈ K∗,

where κ is the total number of additive systems of dimension l. Using now the
precise value of κ calculated in Lemma 12 we arrive at the required result.

All arguments below are valid only for g > 3. We fix an element c ∈ K distinct
from zero (and therefore we fix also the quotient K∗c = K/{0, c}). Returning to the
notation (5.3) in § 5 we can write relations (3.2) (or (6.4)) as follows:

θa+d(z)θa(z) =
1

2g−2

∑
b∈K∗c

(−1)|a,b|+
td′(a′′+b′′) 1

2
(
θ̃b+d(z)θb + θb+dθ̃b(z)

)
,(7.1)

a ∈ K∗c, d ∈ D,

where D = Dc = K∗c + a ⊂ Kc for some (any) a ∈ K∗c.
We now transform (7.1) into the following form:

θa+d(z)θa(z)− 1
2g−1

(
θ̃a+d(z)θa + θa+dθ̃a(z)

)
=

1
2g−2

∑
b∈K∗c

b6=a,a+d

(−1)|a,b|+
td′(a′′+b′′) 1

2
(
θ̃b+d(z)θb + θb+dθ̃b(z)

)
,

(7.2)

a ∈ K∗c, d ∈ D;
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next, we multiply both parts of (7.2) by (−1)|a,d|θa+d and sum over d ∈ D \ {0},
using (only on the left-hand side) formulae (5.4) and (5.5):

2(2g−2 − 1)
(
θ2
a(z)θa −

1
2g−1

θ̃a(z)θ2
a

)
=

1
2g−2

∑
G={a,a1,a2,a3}

(−1)|G|
(
θ̃a1(z)θa2θa3 + θa1 θ̃a2(z)θa3 + θa1θa2 θ̃a3(z)

)
,

(7.3)

a ∈ K∗c,

where summation on the right-hand side proceeds over all 2-dimensional additive
systems G = {a,a+ d,a+ e,a+ d+ e} in K∗c and the quantity

|G| = |d|+ |e|+ de (mod 2)

is independent on one’s choice of an element a ∈ G and generators d, e of the
corresponding additive group G + a ⊂ Kc.

Setting z = 0 in (7.3) we obtain

1
3
· 2(2g−2 − 1)(2g−1 − 1)

2g−1
θ3
a =

1
2g−2

∑
G={a,a1,a2,a3}

(−1)|G|θa1θa2θa3 , a ∈ K∗c.

(7.4)
Multiplying both parts of (7.3) by θa, both parts of (7.4) by θ̃a(z), and adding the
resulting relations we obtain

2(2g−2 − 1)
(
θ2
a(z)θ2

a +
1
3

(
1− 1

2g−3

)
θ̃a(z)θ3

a

)
=

1
2g−2

∑
G3a

θ̃G(z), a ∈ K∗c,

(7.5)
where

θ̃G(z) = (−1)|G|θaθa1θa2θa3 ·
(
θ̃a(z)
θa

+
θ̃a1(z)
θa1

+
θ̃a2(z)
θa2

+
θ̃a3(z)
θa3

)
,

G = {a,a1,a2,a3} 3 a.

Recalling our definitions (5.3) and proceeding from two-dimensional additive
systems G in Kc to three-dimensional systems F = {a,a+ c : a ∈ G} in K, we can
rewrite (7.5):

(2g−2 − 1)(−1)|a,c|ϑ2
a+c(z)ϑ2

a+cϑ
2
a(z)ϑ2

a

+
(2g−3 − 1)(2g−2 − 1)

3 · 2g−2
(−1)|a,c|

(
ϑa+c(2z)ϑa + ϑa+cϑa(2z)

)
ϑ3
a+cϑ

3
a

=
1

2g−3

∑
F⊃{a,a+c}

ϑF(2z), a ∈ K∗, c 6= 0, (7.6)

where on the right-hand side we have summation proceeding over all additive sys-
tems F = {a,a+ c,a+d,a+ e,a+ c+d,a+ c+ e,a+d+ e,a+ c+d+ e} in K

and

ϑF(z) = (−1)|c|+|d|+|e|+cd+de+ec
∏
b∈F

ϑb ·
1
8

∑
b∈F

ϑb(z)
ϑb

. (7.7)
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Lemma 13. The quantity

ϑF = ϑF(0) = (−1)|c|+|d|+|e|+cd+de+ecϑaϑa+cϑa+dϑa+e

× ϑa+c+dϑa+c+eϑa+d+eϑa+c+d+e (7.8)

is independent on one’s choice of an element a of the additive system F and gen-
erators c,d, e of the corresponding additive group F + a.

Proof. In view of the symmetry of the quantity (7.8) relative to the generators
c,d, e of the additive group F + a, it suffices to verify the invariance of ϑF after
the replacements of a = b+ c by b (the independence of one’s choice of an element
of the additive system F) and c = b + d by b (the independence of one’s choice
of generators in the additive group F + a). This invariance can be established by
direct calculations using formula (6.5). We leave the details to the reader.

Lemma 13 shows that the quantity (7.7) is well-defined. We have thus proved
the following result.

Lemma 14. There hold the relations

(2g−2 − 1)(−1)|a,b|ϑ2
a(z)ϑ2

aϑ
2
b(z)ϑ2

b

+
(2g−3 − 1)(2g−2 − 1)

3 · 2g−2
(−1)|a,b|

(
ϑa(2z)ϑb + ϑaϑb(2z)

)
ϑ3
aϑ

3
b

=
1

2g−3

∑
F⊃{a,b}

ϑF(2z), a, b ∈ K∗, a 6= b, (7.9)

where summation on the right-hand side proceeds over all additive systems F⊃{a, b}
of dimension 3 in K and the functions ϑF(z) are defined by (7.7). In particular, for
g = 3 there hold the relations

(−1)|a,b|ϑ2
a(z)ϑ2

aϑ
2
b(z)ϑ2

b =
∑

F⊃{a,b}

ϑF(2z), a, b ∈ K∗, a 6= b.

Proof. It suffices to set b = a+ c in (7.6).

We proceed now to summation of relations (7.9) over all b ∈ K∗ \ {a}. For the
left-hand sides we use the following consequence of Riemann relations (3.1):∑

b∈K∗

b6=a

(−1)|a,b|ϑ2
b(z)ϑ2

b = (2g − 1)ϑ2
a(z)ϑ2

a, a ∈ K∗,

∑
b∈K∗

b6=a

(−1)|a,b|ϑ4
b = (2g − 1)ϑ4

a, a ∈ K∗,

∑
b∈K∗

b6=a

(−1)|a,b|ϑb(2z)ϑ3
b = 2gϑ4

a(z)− ϑa(2z)ϑ3
a, a ∈ K∗.



34 V. V. Zudilin

Hence∑
b∈K∗

b6=a

(
(2g−2 − 1)(−1)|a,b|ϑ2

a(z)ϑ2
aϑ

2
b(z)ϑ2

b

+
(2g−2 − 1)(2g−3 − 1)

3 · 2g−2
(−1)|a,b|

(
ϑa(2z)ϑb + ϑaϑb(2z)

)
ϑ3
aϑ

3
b

)
=

7(2g−2 − 1)(2g−1 − 1)
3

ϑ4
a(z)ϑ4

a +
(2g−3 − 1)(2g−2 − 1)(2g−1 − 1)

3 · 2g−3
ϑa(2z)ϑ7

a,

a ∈ K∗. (7.10)

The number of additive systems F ⊃ {a, b} of dimension 3 in K = Z
2g/2Z2g

is equal to the number of 2-dimensional additive systems G 3 a in Kb−a '
Z

2g−2/2Z2g−2, which by the corollary to Lemma 12 is

(2g−3 + 1)(2g−1 − 1)
22g−4 − 1

(22 − 1)(2− 1)
.

The cardinality of the set K∗ \ {a} is

2g−1(2g + 1)− 1 = (2g−1 + 1)(2g − 1).

Hence summing the right-hand sides of (7.9) for b ∈ K∗ \ {a} we obtain

κ1 = (2g−3 + 1)(2g−1 + 1)(2g−1 − 1)(2g − 1)
22g−4 − 1

(22 − 1)(2− 1)

= (2g−3 + 1)(2g − 1)
(22g−2 − 1)(22g−4 − 1)

(22 − 1)(2− 1)

terms, each corresponding to some additive system F 3 a of dimension 3 in K. The
number of such additive systems is by Corollary to Lemma 12 equal to

κ2 = (2g−3 + 1)(2g − 1)
(22g−2 − 1)(22g−4 − 1)
(23 − 1)(22 − 1)(2− 1)

.

Consequently,

1
2g−3

∑
b∈K∗

b6=a

∑
F⊃{a,b}

ϑF(2z) =
1

2g−3
· κ1

κ2

∑
F3a

ϑF(2z) =
7

2g−3

∑
F3a

ϑF(2z), a ∈ K∗.

(7.11)
Combining (7.10) and (7.11) we obtain the following result.

Lemma 15. The following relations hold :

(2g−2 − 1)(2g−1 − 1)
3

ϑ4
a(z)ϑ4

a +
(2g−3 − 1)(2g−2 − 1)(2g−1 − 1)

3 · 7 · 2g−3
ϑa(2z)ϑ7

a

=
1

2g−3

∑
F3a

ϑF(2z), a ∈ K∗, (7.12)
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where summation on the right-hand side proceeds over all additive systems F 3 a
of dimension 3 in K and the functions ϑF(z) are defined by (7.7). In particular, for
g = 3 there hold the relations

ϑ4
a(z)ϑ4

a =
∑
F3a

ϑF(2z), a ∈ K∗.

For an additive system F in K of dimension dim F = 3 let SF and PF be the sum
of the functions ψb, b ∈ F, and the sum of all their pairwise products, respectively.
Relations (7.12) enable one to deduce another system of differential equations for
the functions (0.18).

Theorem 5. The functions (0.18) satisfy the system of differential equations

ϑ8
aδψa = −2

3

(
13− 1

2g−4

)
ϑ8
aψ

2
a +

1
2g−3(2g−2 − 1)(2g−1 − 1)

∑
F3a

ϑFPF, a ∈ K∗,

(7.13)
where summation on the right-hand side proceeds over all additive systems F 3 a of
dimension 3 in K and the functions ϑF are defined by equalities (7.8). In addition,

ϑ8
a =

21
(2g−2 − 1)(2g−1 − 1)(2g − 1)

∑
F3a

ϑF, a ∈ K∗,

ϑ8
aψa =

21
8(2g−2 − 1)(2g−1 − 1)(2g − 1)

∑
F3a

ϑFSF, a ∈ K∗.

(7.14)

Proof. For each additive system F of dimension 3 in K we set

(SF)2 =
(∑
a∈F

ψa

)2

, S2
F =

∑
a∈F

ψ2
a

and use in both parts of (7.12) the expansions (4.1) with remainders in O(z6):

(2g−2 − 1)(2g−1 − 1)
3

ϑ8
a ·
(

1− 8ψa +
80
3
ψ2
a +

8
3
δψa

)
+

(2g−3 − 1)(2g−2 − 1)(2g−1 − 1)
3 · 7 · 2g−3

ϑ8
a ·
(

1− 8ψa +
32
3
ψ2
a +

32
3
δψa

)
=

1
2g−3

∑
F3a

ϑF ·
(

1− SF +
4
3
S2

F +
4
3
δSF

)
, a ∈ K∗.

Hence

(2g−2 − 1)(2g−1 − 1)(2g − 1)
3 · 7

ϑ8
a =

∑
F3a

ϑF, a ∈ K∗, (7.15)

(2g−2 − 1)(2g−1 − 1)(2g − 1)
3 · 7

ϑ8
aψa =

1
8

∑
F3a

ϑFSF, a ∈ K∗,
(7.16)

(2g−3 − 1)(2g−2 − 1)(2g−1 − 1)
3 · 7

ϑ8
a(74ψ2

a + 11δψa)

+
(2g−2 − 1)(2g−1 − 1)

3
ϑ8
a(10ψ2

a + δψa) =
1
2

∑
F3a

ϑF(S2
F + δSF), a ∈ K∗.

(7.17)
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Relations (7.15) and (7.16) bring us to (7.14); δ-differentiating (7.16) we obtain

(2g−2 − 1)(2g−1 − 1)(2g − 1)
3 · 7

ϑ8
a(8ψ2

a+ δψa) =
1
8

∑
F3a

ϑF

(
(SF)2 + δSF

)
, a ∈ K∗.

(7.18)
Multiplying (7.18) by 4 and subtracting (7.17) we see that

2
3

(13 · 2g−3 − 2)(2g−2 − 1)(2g−1 − 1)ϑ8
aψ

2
a + 2g−3(2g−2 − 1)(2g−1 − 1)ϑ8

aδψa

=
1
2

∑
F3a

ϑF

(
(SF)2 − S2

F

)
, a ∈ K∗,

which brings us to the system of differential equations (7.13).

Corollary. For g = 3 the functions (0.18) satisfy the system of differential equa-
tions

ϑ8
aδψa = −22

3
ϑ8
aψ

2
a +

1
3

∑
F3a

ϑFPF, a ∈ K∗, (7.19)

where summation on the right-hand side proceeds over all Göpel systems F 3 a, the
functions ϑF are defined by (7.8), and PF is the sum of all pairwise products of the
functions ψb, b ∈ F. Moreover,

ϑ8
a =

∑
F3a

ϑF, ϑ8
aψa =

1
8

∑
F3a

ϑFSF, a ∈ K∗. (7.20)

Note that, according to the corollary to Lemma 12, the number of the Göpel
systems involved in summation in (7.19) and (7.20) is 30.

§ 8. Modular nature

Thus far, we took no account of the modular properties of the thetanulls and
their logarithmic derivatives. This was an affordable luxury because we were inter-
ested only in differential equations for these functions. In addition, we left open
the question on the existence of relations expressing thetanulls in terms of their
logarithmic derivatives (for g = 1 examples of such relations are formulae (0.8)
established in § 1).

We consider the one-dimensional case first. The action of the group SL2(R), the
group SL2(Z), and each its congruence subgroup

Γ ⊂
{(

1 0
0 1

)
(modL)

}
⊂ SL2(Z)

(of level L) on the upper half-plane H1 = {τ : Im τ > 0} is defined by the formula

τ 7→ γτ =
aτ + b

cτ + d
, γ =

(
a b
c d

)
∈ SL2(R).
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A holomorphic function F (τ) on H1 is called a (holomorphic) modular form of
weight w with respect to Γ if

F (γτ) = (cτ + d)wF (τ) for all γ =
(
a b
c d

)
∈ Γ (8.1)

and for each γ ∈ SL2(Z) the function (cτ+d)−wF (γτ) can be expanded in a Fourier
series

∞∑
n=0

fne
2πinτ/L.

The set of modular forms of weight w with respect to a fixed congruence sub-
group Γ is a vector space, which we denote by Modw(Γ). Calculating the logarithmic
derivative of both parts of (8.1) for an arbitrary form F ∈ Modw(Γ) we obtain

dF/dτ

F

(
aτ + b

cτ + d

)
= wc(cτ +d)+(cτ +d)2 dF/dτ

F

(
aτ + b

cτ + d

)
, γ =

(
a b
c d

)
∈ Γ.

(8.2)
It is easy to deduce from (8.2) that the differential operator

D : F 7→ δ

(
δF

F

)
− 1
w

(
δF

F

)2

, δ =
1
πi

d

dτ
, (8.3)

maps the space Modw(Γ) into Mod4(Γ), that is, the function DF is a modular form
of weight 4 with respect to Γ.

For a pair of forms F1, F2 ∈ Modw(Γ) it follows by equalities (8.2) that the
function

δF1

F1
− δF2

F2
(8.4)

is a modular form of weight 2 with respect to Γ. This fact and the functional
equation for the thetanulls

ϑj

(
aτ + b

cτ + d

)
= ξ(cτ + d)1/2ϑj(τ), j = 2, 3, 4, ξ8 = 1,

γ =
(
a b
c d

)
∈ Γ1,2 =

{(
a b
c d

)
: a, b, c, d ∈ Z, ad− bc = 1, ab ∈ 2Z, cd ∈ 2Z

}
(the appropriate choice of ξ = ξ(γ) and a branch of the root function is described in
Theorem 7.1 in [3]; Chapter I) enable one to give another proof of identities (0.8).

For g > 1 on the Siegel upper half-space Hg ⊂ Symg(C) we have the action of
the symplectic group

Sp2g(R) =
{
γ =

(
A B
C D

)
: tγ
(

0 E
−E 0

)
γ =

(
0 E
−E 0

)}
, (8.5)

where A,B,C,D are real square matrices of order g and E is the identity matrix.
This action is described by the formula

T 7→ γT = (AT +B)(CT +D)−1, γ =
(
A B
C D

)
∈ Sp2g(R).

The definition of the Siegel modular group Sp2g(Z) is the same as (8.5), except that
the entries of the matrices A,B,C,D must now be integers.
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Lemma 16 (see [25]; unproved formula (4.2)). Let F (T), F : Hg → R, be a
meromorphic function and let ∆ be the matrix differential operator defined by for-
mula (0.19) (that is, ∆F is a symmetric square matrix of order g with entries that
are the corresponding partial δjk-derivatives of the function F ). Then

(∆F )(γT) = (CT +D) ·∆F (γT) · t(CT +D) (8.6)

for all γ =
(
A B
C D

)
∈ Sp2g(Z).

Proof. Let τjk and τ ′jk, j, k = 1, . . . , g, be the entries of the matrices T ∈ Hg and
T′ = γT ∈ Hg, where γ ∈ Sp2g(Z); we denote the corresponding δ-differentiations
by δjk and δ′jk, j, k = 1, . . . , g. In view of the symmetry of the matrices T and T′,
only the entries with indices j, k such that 1 6 j 6 k 6 g, are independent. By the
rules of differentiation of composite functions we obtain

δjkF (T′) =
( g∑
l,m=1

∂τ ′lm
∂τjk

δ′lmF

)
(T′), j, k = 1, . . . , g. (8.7)

For we have

δjjF (T′) =
1
πi

∂F (T′)
∂τjj

=
1
πi

( ∑
16l6m6g

∂τ ′lm
∂τjj

∂F

∂τ ′lm

)
(T′)

=
( g∑
l,m=1

∂τ ′lm
∂τjj

δ′lmF

)
(T′), j = 1, . . . , g,

δjkF (T′) =
1

2πi
∂F (T′)
∂τjk

=
1

2πi

( ∑
16l6m6g

∂τ ′lm
∂τjk

∂F

∂τ ′lm

)
(T′)

=
( g∑
l,m=1

∂τ ′lm
∂τjk

δ′lmF

)
(T′), j, k = 1, . . . , g.

It suffices to verify equality (8.6) for the generators

γ1 =
(
E B
0 E

)
, γ2 =

(
tA 0
0 A−1

)
, γ3 =

(
0 E
−E 0

)
, (8.8)

of the group Sp2g(Z), where the matrix A ∈ GLg(Z) and the symmetric integer
matrix B can be arbitrary (see [3]; Chapter II, Appendix to § 5, Proposition A.5).
Performing direct calculating with matrices it is easy to show that if (8.6) holds for
γ, γ′ ∈ Sp2g(Z), then this relation holds also for the product γγ′.

For T′ = γ1T = T +B we have τ ′jk = τjk + bjk, j, k = 1, . . . , g, therefore

δjkF (T′) = (δjkF )(T′), j, k = 1, . . . , g.

Hence
∆F (γ1T) = (∆F )(γ1T). (8.9)
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If T′ = γ2T = tATA, where A = (ajl)j,l=1,...,g, then

τ ′lm =
g∑

j,k=1

ajlakmτjk, l,m = 1, . . . , g,

and therefore

∂τ ′lm
∂τjk

= ajlakm, j, k = 1, . . . , g, l,m = 1, . . . , g.

By formula (8.7),

δjkF (T′) =
( g∑
l,m=1

ajlakmδ
′
lmF

)
(T′), j, k = 1, . . . , g,

so that
∆F (γ2T) = A · (∆F )(γ2T) · tA. (8.10)

For the last generator γ3 we have T′ = γ3T = −T−1; in other words, T′T = −E.
Hence

0 =
∂

∂τjk
(T′T) =

∂

∂τjk
T′ · T + T′ · ∂

∂τjk
T, j, k = 1, . . . , g

(we have the matrix zero on the left-hand side), and

∂

∂τjk
T′ = −T′ · ∂

∂τjk
T · T−1 = T′ · ∂

∂τjk
T · T′, j, k = 1, . . . , g,

therefore
∂τ ′lm
∂τjk

= τ ′ljτ
′
km, j, k = 1, . . . , g, l,m = 1, . . . , g.

Substituting this in relations (8.7) we obtain

δjkF (T′) =
( g∑
l,m=1

τ ′ljτ
′
kmδ

′
lmF

)
(T′), j, k = 1, . . . , g,

so that
∆F (γ3T) = T′ · (∆F )(γ3T) · T′ = T−1 · (∆F )(γ3T) · T−1. (8.11)

Combining equalities (8.9)–(8.11), for the generators (8.8) of the group Sp2g(Z)
we obtain the equality

∆F (γT) = (CT +D)−1 · (∆F )(γT) · t(CT +D)−1 (8.12)

(the matrix T is symmetric). Equality (8.6) follows from (8.12). Hence (8.6) holds
for all γ ∈ Sp2g(Z), which completes the proof.
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A holomorphic (meromorphic) function F (T) on Hg is called a holomorphic
(respectively, meromorphic) modular form of weight w with respect to a congru-
ence subgroup

Γ ⊂
{(

E 0
0 E

)
(modL)

}
⊂ Sp2g(Z)

if

F (γT) = detw(CT +D) · F (T) for all γ =
(
A B
C D

)
∈ Γ. (8.13)

The additional conditions constraining the growth of F (T) at the ‘vertices’ hold
automatically for g > 1: this is the so-called Koecher principle (see [2]; Chapter V,
Lemma 19).

In the perfect accordance with the one-dimensional case, the set of modular
forms of weight w with respect to a fixed congruence subgroup Γ is a vector space,
which we denote by Modw(Γ) = Mod(g)

w (Γ).

Lemma 17. Let F : Hg → R be a congruence form of weight w with respect to a
congruence subgroup Γ of Sp2g(Z). Then the (matrix-valued) function

Ψ =
∆F
F

: Hg → Symg(C) (8.14)

satisfies the functional equation

Ψ(γT) = πiw(CT +D) · tC + (CT +D) ·Ψ(T) · t(CT +D), γ ∈ Γ. (8.15)

Proof. We point out straight away the simple equality

∆ det(CT +D)
det(CT +D)

= πitC · t(CT +D)−1 (8.16)

holding for arbitrary matrices C,D. Its verification is immediate (cf. [25]; formula
(4.3)).

Taking the logarithm of both sides of (8.13) and applying the differential oper-
ator ∆, in view of (8.16), we obtain

∆F (γT)
F (γT)

= πiwtC · t(CT +D)−1 +
∆F (T)
F (T)

, γ ∈ Γ,

and therefore

(CT +D) · ∆F (γT)
F (γT)

· t(CT +D)

= πiw(CT +D) · tC + (CT +D) · ∆F (T)
F (T)

· t(CT +D), γ ∈ Γ. (8.17)

By Lemma 16,

(CT +D) · ∆F (γT)
F (γT)

· t(CT +D) =
(

∆F
F

)
(γT), γ ∈ Sp2g(Z). (8.18)

Comparing (8.17) and (8.18), we obtain (8.15).
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Corollary 1. Let F1 and F2 be arbitrary modular forms of weight w with respect
to a congruence subgroup Γ of Sp2g(Z). Then the function

det
(

∆F1

F1
− ∆F2

F2

)
(T) (8.19)

is a meromorphic modular form of weight 2 with respect to the same subgroup Γ.

Proof. Applying Lemma 17 to the functions F1 and F2, subtracting one of the
resulting equalities from the other, and calculating the determinants we obtain

det
(

∆F1

F1
− ∆F2

F2

)
(γT) = det2(CT +D) · det

(
∆F1

F1
− ∆F2

F2

)
(T), γ ∈ Γ.

This relation means precisely that the function (8.19) is a modular form of weight 2
with respect to the congruence subgroup Γ.

Remark. By contrast to the case g = 1, the entries of the matrix-valued func-
tion (8.14) are not holomorphic functions on Hg therefore we must emphasize that
the function (8.19) is a meromorphic modular form. In the case of holomorphic
modular forms F1 and F2 their ∆-derivatives have holomorphic entries, therefore
we can refine the last result as follows.

Corollary 2. Let F1 and F2 be arbitrary holomorphic modular forms of weight w
with respect to the congruence subgroup Γ ⊂ Sp2g(Z). Then the function

(F1F2)g · det
(

∆F1

F1
− ∆F2

F2

)
(T) (8.20)

is a holomorphic modular form of weight 2wg + 2 with respect to the same sub-
group Γ.

Proof. This can be established by the calculation of the weight of the holomorphic
modular form (8.20), because the fact that it is a modular form is a consequence
of Corollary 1.

Corollaries to Lemma 17 generalize in a certain sense the differential opera-
tion (8.4) to the case of arbitrary dimension. Note that the differential opera-
tor (8.3) also has multidimensional generalizations (see [26]).

As in the one-dimensional case, for g > 1 there exists a functional equation
holding for all thetanulls:

ϑa
(
(AT +B)(CT +D)−1

)
= ξ · det1/2(CT +D) · ϑa(T), a ∈ K∗, ξ8 = 1,

(8.21)(
A B
C D

)
∈ Γ1,2 = Γ(g)

1,2

(see [3]; Chapter II, § 5). The congruence subgroup Γ1,2 of Sp2g(Z) (of level 2) is
generated by the elements (8.8), where the matrix A ∈ GLg(Z) and the symmetric
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integer matrix B with even main diagonal are arbitrary (see [3]; Chapter II, Appen-
dix to § 5, Proposition A.4). The definition (8.13) of modular forms can be extended
by letting in unity roots as coefficients in the right-hand side of (8.13). Without
concentrating on this we observe that the presence of a constant coefficient ξ does
not influence logarithmic ∆-differentiation of (8.21), therefore Lemma 17 brings us
to the following result.

Lemma 18. For each even characteristic a the matrix-valued function

Ψa =
∆ϑa
ϑa

: Hg → Symg(C)

with entries that are logarithmic derivatives of thetanulls (see (0.16)) satisfies the
functional equation

Ψa(γT) =
πi

2
(CT +D) · tC + (CT +D) ·Ψa(T) · t(CT +D), γ ∈ Γ1,2.

Corollary 1. For all even characteristics a, b ∈ K the function

(ϑaϑb)g · det(Ψa −Ψb)(T)

is a holomorphic modular form of weight g + 2 with respect to Γ1,2.

Of course, Corollary 1 is just one consequence of Lemma 18. We now present a
more general result in the spirit of § 7.

Corollary 2. Let G be an additive system of characteristics in K of dimension l 6 g
that is partitioned into disjoint additive subsystems F + c and F of dimension l− 1:
G = (F + c) ∪ F, where c ∈ K is a characteristic distinct from zero in the additive
group corresponding to G. Then the function(∏

a∈F

ϑa+cϑa

)g
· det

(∑
a∈F

(Ψa+c −Ψa)
)

(8.22)

is a holomorphic modular form of weight 2l−1g + 2 with respect to Γ1,2.

For g = 2 and g = 3 these results can be put into a quantitative form. For an
arbitrary subset G of K∗ let

ϑG =
∏
a∈G

ϑa, ΨG =
∑
a∈G

Ψa.

We set

χg =


ϑ4

K∗ for g = 1,

ϑ2
K∗ for g = 2,

ϑK∗ for g = 3

(8.23)

(the minimal parabolic modular forms with respect to Sp2g(Z) in dimensions 1, 2,
and 3, respectively; see [15]).
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Lemma 19. For g 6 3 let G be a Göpel system of characteristics in K partitioned
into disjoint additive subsystems F + c and F of dimension g − 1. Then

det(ΨF+c −ΨF) = ± 1
22g

χg
(ϑF+cϑF)4

. (8.24)

Proof. For g = 1 relations (8.24) become formulae (0.8) (although the latter contain
no ±-ambiguities). By the main result of § 5 in [2] the holomorphic forms (8.22) can
be expressed as polynomials of the squares of thetanulls for g = 2 and of thetanulls
for g = 3. Hence the proof reduces to the calculation of the first coefficients of the
Fourier expansions for the holomorphic functions (8.22), for monomials of degree 6
of the squares of thetanulls for g = 2, and for monomials of degree 28 of thetanulls
for g = 3. The details of these calculations are beyond the scope of this work.

Theorem 6. For g 6 3 the thetanulls are algebraic over the field generated by their
δ-logarithmic derivatives (0.16).

Proof. For g = 1 formulae (0.8) show that the fourth degrees of thetanulls are (up
to constant coefficients) differences of δ-logarithmic derivatives (0.5).

Formulae (8.24) are independent (up to a sign) of the partitioning G = (F+c)∪F

of a Göpel system into two disjoint additive systems. For that reason we fix one
such partitioning for each Göpel system by setting

λG = det(ΨF+c −ΨF), (8.25)

and write relations (8.24) as follows:

±22gλG = χgϑ
−4
G . (8.26)

Multiplying equalities (8.26) for all Göpel systems in K, of which the number is 15
for g = 2 and 135 for g = 3 by Lemma 12, we obtain

±260
∏
G

λG = χ15
2

∏
G

ϑ−4
G = χ15

2

∏
a∈K∗

ϑ−24
a = χ3

2 for g = 2,

±26·135
∏
G

λG = χ135
3

∏
G

ϑ−4
G = χ135

3

∏
a∈K∗

ϑ−120
a = χ15

3 for g = 3.
(8.27)

We used here the definition (8.23) of the quantities χ2 and χ3 and the following
consequence of Lemma 12: each even characteristic participates in 6 Göpel systems
for g = 2 and in 30 systems for g = 3.

Fixing an even characteristic a we now multiply equalities (8.26) for all Göpel
systems G containing a:

±224
∏
G3a

λG = χ6
2

∏
G3a

ϑ−4
G = χ6

2 · ϑ−16
a

∏
b∈K∗

ϑ−8
b = χ2

2 · ϑ−16
a for g = 2,

(8.28)

±26·30
∏
G3a

λG = χ30
3

∏
G3a

ϑ−4
G = χ30

3 · ϑ−96
a

∏
b∈K∗

ϑ−24
b = χ6

3 · ϑ−96
a for g = 3.

(8.29)
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Raising equalities (8.28) to the third and equalities (8.29) to the fifth degree and
substituting (8.27) we obtain

ϑ48
a = ±χ6

2 · 272
∏
G3a

λ−3
G = ±2120

∏
G

λ2
G · 272

∏
G3a

λ−3
G

= ±2192
∏
G63a

λ2
G ·

∏
G3a

λ−1
G for g = 2,

ϑ480
a = ±χ30

2 · 2900
∏
G3a

λ−5
G = ±212·135

∏
G

λ2
G · 2900

∏
G3a

λ−5
G

= ±22520
∏
G63a

λ2
G ·

∏
G3a

λ−3
G for g = 3.

(8.30)

Relations (8.30) show that for g = 2 and g = 3 the thetanulls are algebraic over the
field generated by the functions (8.24), which are polynomials of the logarithmic
derivatives (0.16) of thetanulls. The proof is complete.

One may regard both (8.24) and (8.30) as generalizations of formulae (0.8) to
g = 2 and g = 3. We point out other formulae of this kind, the proof of which is
‘the same’ as the proof of Lemma 19 and is left out for this reason.

Lemma 20. (a) Let g = 2. Then for all even characteristics a and b there holds
the relation

det(Ψa −Ψb) = ± 1
24
χ2 ·

∏
G⊃{a,b}

ϑ−2
G ,

where the product
∏

G⊃{a,b} is taken over all (=both) Göpel system containing a
and b.

(b) Let g = 3 and let a1,a2,a3,a4 be even characteristics making up an additive
system A (of dimension 2). Then

det(Ψa1 + Ψa2 −Ψa3 −Ψa4) = ± 1
26
χ3 ·

∏
G⊃A

ϑ−2
G ,

where the product
∏

G⊃A is taken over all (=both) Göpel systems containing the
system A.
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