РАЗЛОЖЕНИЯ КРАТНЫХ ИНТЕГРАЛОВ В ЛИНЕЙНЫЕ ФОРМЫ

С. А. Злобин

Доказываются общие теоремы о разложении кратных интегралов в линейные формы от обобщенных полиэдрических с коэффициентами — рациональными функциями.
Библиография: 13 названий.

1. Введение. При исследованиях иррациональности значений дзета-функции Римана возникают многомерные интегралы, представимые в виде линейных форм с рациональными коэффициентами от этих значений. Первые такие интегралы были предложены Ф. Бейкером [1] в 1979 г. после доказательства Р. Апера иррациональности $\zeta(3)$. Его интегралы

$$\int_{[0,1]^2} \frac{x^n(1-x)^ny^n(1-y)^n}{(1-xy)^{n+1}} \, dx \, dy$$

и

$$\int_{[0,1]^3} \frac{x^n(1-x)^ny^n(1-y)^nz^n(1-z)^n}{(1-z(1-xy))^{n+1}} \, dx \, dy \, dz$$

могут быть представлены в виде линейных форм от $1, \zeta(2)$ и $1, \zeta(3)$ соответственно.

Существуют различные попытки обобщения этих интегралов. Первая из них была в 1990 г. предпринята О. Н. Василенко [2], который рассмотрел интегралы

$$V_{m,n} = \int_{[0,1]^m} \frac{\prod_{i=1}^{m} x_i^n(1-x_i)^n}{(1-x_1(1-x_2(\cdots-x_{m-1}(1-x_m))\cdots))^{n+1}} \, dx_1 \, dx_2 \cdots dx_m \quad (1)$$

и установил некоторые свойства $V_{m,0}$. Интегралы $V_{2,n}$ и $V_{3,n}$ (после замены $x_m \to 1 - x_m$) совпадают с интегралами Бейкера. Изучение интегралов этого вида продолжил Л. В. Василенко [3], доказав, что при $m = 4$ и $m = 5$ интеграл (1) представляется в виде линейных форм с рациональными коэффициентами от $1, \zeta(2), \zeta(4)$ и $1, \zeta(3), \zeta(5)$ соответственно. Естественным обобщением (1) является интеграл

$$V(z) = \int_{[0,1]^m} \frac{\prod_{i=1}^{m} x_i^{a_i-1}(1-x_i)^{b_i-a_i-1}}{(1-zx_1(1-x_2(\cdots-x_{m-1}(1-x_m))\cdots))^{a_0}} \, dx_1 \, dx_2 \cdots dx_m.$$
В. В. Зудилин в [4] доказал, что при некоторых условиях на параметры интеграл $V(1)$ равен значению гипергеометрической функции в точке $z = 1$, что доказывало его представление в виде линейной формы от 1 и чисел $\zeta(k)$ для $1 < k \leq m$ той же четности, что и m.

Другая попытка обобщения интегралов Бейкера была предпринята В. Н. Сорокиным [5], [6], который по сущности доказал тождество

$$
\int_{[0,1]^3} \frac{x_1^n(1-x_1)^nx_2^n(1-x_2)^nx_3^n(1-x_3)^n}{(1-zx_1x_2)^{n+1}(1-zx_1x_2x_3)^{n+1}} \, dx_1 \, dx_2 \, dx_3 \\
= P_{2,1}(z^{-1})L_{2,1}(z) + P_{1,1}(z^{-1})L_{1,1}(z) + P_1(z^{-1})L_1(z) + P_0(z^{-1})
$$

(2)

и

$$
\int_{[0,1]^{2l}} \frac{\prod_{i=1}^{2l} x_i^{a_i-1}(1-x_i)^n}{\prod_{j=1}^l (1-zx_1x_2\cdots x_{2j})^{n+1}} \, dx_1 \, dx_2 \cdots dx_{2l} \\
= \sum_{k=0}^{l-1} P_k(z^{-1})L_{i\{2\}}_k(z) + \sum_{k=0}^{l-1} T_k(z^{-1})L_{i,\{2\}}_k(z),
$$

(3)

где $a_{2j-1} = a_{2j} = (l + 1 - j)(n + 1) - s$, $0 \leq s \leq n$. Через $\{a\}_k$ мы обозначаем k раз повторенную через занятие число a. В этих формулировках присутствуют обобщенные полиэргарифмы, определяемые равенствами

$$
L_{i\{\bar{s}\}}(z) = \sum_{n_1 > n_2 > \cdots > n_l \geq 1} \frac{z^n}{n_1^{s_1}n_2^{s_2} \cdots n_l^{s_l}}, \quad L_{i\{s\}}(z) = \sum_{n_1 \geq n_2 \geq \cdots \geq n_l \geq 1} \frac{z^n}{n_1^{s_1}n_2^{s_2} \cdots n_l^{s_l}};
$$

где $\bar{s} = (s_1, s_2, \ldots, s_l)$ — вектор с натуральными компонентами. Ряды, определяющие обобщенные полиэргарифмы, сходятся при $|z| < 1$. Они могут быть выражены друг через друга. Для удобства положим $L_{\{\bar{s}\}}(z) = L_{\{s\}}(z) = 1$. Здесь и далее коэффициенты при полиэргарифмах в разложении интегралов — многочлены с рациональными коэффициентами. Существование такого разложения было показано с помощью аппроксимаций Паде. В дальнейшем будут использоваться длина $\ell(\bar{s})$ вектора \bar{s} — количество его координат, и вес $w(\bar{s})$ — сумма его компонент. Будем писать $\bar{u} \leq \bar{v}$, если длины векторов \bar{u} и \bar{v} равны и $u_i \leq v_i$ при любом допустимом i. Назовем вектор \bar{u} подчиненным вектору \bar{v}, если $\bar{u} \leq \bar{v}$ или $\bar{u} \leq \bar{v}'$ для некоторого вектора \bar{v}', полученного из вектора \bar{v} вычеркиванием нескольких компонент.

Ниже мы рассмотрим интегралы вида (2), (3) в общем виде

$$
S(z) = \int_{[0,1]^m} \frac{\prod_{i=1}^m x_i^{a_i-1}(1-x_i)^{b_i-a_i-1}}{\prod_{j=1}^l (1-zx_1x_2\cdots x_{r_j})^{c_j}} \, dx_1 \, dx_2 \cdots dx_m, \quad 0 = r_0 < r_1 < r_2 < \cdots < r_l = m.
$$

(4)

Оказывается, интеграл $V(z)$ при некоторых ограничениях на параметры может быть свведен к $S(z)$. Это было независимо показано автором [7] и С. Фишлером [8] (для $z = 1$). Более общее тождество было доказано в [9].
2. Общая теорема о разложении кратных интегралов.

Лемма 1. Обобщенные полиграфиры \(L_{\sigma_1, \sigma_2, \ldots, \sigma_n}(z) \) с различными индексами линейно независимы над \(\mathbb{C}(z) \).

Доказательство. Известно, что обобщенные полиграфиры \(L_{\sigma_1, \sigma_2, \ldots, \sigma_n}(z) \) (со строгими неравенствами) при различных индексах линейно независимы над \(\mathbb{C}(z) \) (см. [10], [11]). Наборы функций \(\{L_{\sigma}(z)\} \) и \(\{L_{\sigma}(z)\} \) с весами вектора \(\tilde{s} \), не превосходящими некоторого фиксированного числа и упорядоченных по возрастанию длины \(\tilde{s} \), связаны преобразованием с верхнетреугольной матрицей с ненулевыми диагональными элементами (см. [11, п. 3]):

\[
L_{\tilde{s}}(z) = L_{\tilde{s}}(z) + \sum_{\tilde{t}} L_{\tilde{t}}(z),
\]

где векторы \(\tilde{t} \) в сумме имеют тот же вес, что и \(\tilde{s} \), но меньшую длину. Отсюда и следует линейная независимость \(L_{\sigma}(z) \) над \(\mathbb{C}(z) \).

Следствие 1. Если функция \(f(z) \) имеет представление в виде конечной суммы \(\sum_{s} P_{s}(z^{-1}) L_{s}(z) \), где \(P_{s}(x) \) — многочлены, то это представление единствено.

Рассмотрим теперь интеграл (4). При условиях \(\text{Re}(b_i) > \text{Re}(a_i) > 0, 1 \leq i \leq m, \text{Re}(c_j) > 0, 1 \leq j \leq l, \) и \(|z| < 1 \) он, очевидно, сходится.

Лемма 2. Пусть \(b_i - a_i \) и \(c_j \) — натуральные числа. Тогда выполняется равенство

\[
zS(z) = \sum_{n_1 \geq n_2 \geq \ldots \geq n_l \geq 1} R(n_1, n_2, \ldots, n_l) z^{n_1},
\]

где

\[
R(\zeta_1, \zeta_2, \ldots, \zeta_l) = \frac{\prod_{i=1}^{m} \Gamma(b_i - a_i)}{\prod_{j=1}^{l} \Gamma(c_j)} \times \frac{\prod_{j=1}^{l} (\zeta_j - \zeta_{j+1} + 1)(\zeta_j - \zeta_{j+1} + 2) \cdots (\zeta_j - \zeta_{j+1} + c_j - 1)}{\prod_{j=1}^{l} \prod_{i=r_j-1+1}^{r_j} (\zeta_j + a_i - 1)(\zeta_j + a_i) \cdots (\zeta_j + b_i - 2)}
\]

и подразумевается, что \(r_0 = 0, \zeta_{l+1} \equiv 1, \) и в случае \(c_j = 1 \) множитель в числителе опускается.

Доказательство. Разложим каждый множитель \((1 - x_1 x_2 \ldots x_{r_j})^{-c_j}\) под интегралом по формуле

\[
\frac{1}{(1 - x)^c} = \sum_{k=0}^{\infty} \frac{\Gamma(c + k)}{\Gamma(c) k!} x^k.
\]

Получим

\[
S(z) = \int_{[0, 1]^m} \prod_{i=1}^{m} x_i^{a_i - 1} (1 - x_i)^{b_i - a_i - 1} \times \prod_{j=1}^{l} \sum_{k_j=0}^{\infty} \frac{\Gamma(c_j + k_j)}{\Gamma(c_j) k_j!} (x_1 x_2 \ldots x_{r_j})^{k_j} dx_1 dx_2 \cdots dx_m
\]
\[
\begin{align*}
&= \sum_{k_1, \ldots, k_l = 0}^{\infty} z^{k_1 + k_2 + \cdots + k_l} \prod_{j=1}^{l} \frac{\Gamma(c_j + k_j)}{\Gamma(c_j) k_j!} \\
&\times \int_{[0,1]^m} \prod_{j=1}^{l} \prod_{i=r_{j-1}+1}^{r_j} x_i^{a_i + k_j + \cdots + k_l - 1} (1 - x_i)^{b_i - a_i - 1} dx_1 dx_2 \cdots dx_m \\
&= \sum_{k_1, \ldots, k_l = 0}^{\infty} z^{k_1 + k_2 + \cdots + k_l} \prod_{j=1}^{l} \frac{\Gamma(c_j + k_j)}{\Gamma(c_j) k_j!} \\
&\times \prod_{j=1}^{l} \prod_{i=r_{j-1}+1}^{r_j} \frac{\Gamma(a_i + k_j + \cdots + k_l) \Gamma(b_i - a_i)}{\Gamma(b_i + k_j + \cdots + k_l)}.
\end{align*}
\]

Сделаем замену переменных \(n_i = k_i + k_{i+1} + \cdots + k_l + 1; \) тогда \(k_i = n_i - n_{i+1}, \)
\(n_{i+1} = 1. \) После перегруппировки множителей получим

\[
S(z) = \sum_{n_1 \geq n_2 \geq \cdots \geq n_l \geq 1} z^{n_1 - 1} \prod_{j=1}^{l} \frac{\Gamma(b_i - a_i)}{\Gamma(c_j)} \\
\times \frac{\prod_{j=1}^{l}(n_j - n_{j+1} + 1)(n_j - n_{j+1} + 2) \cdots (n_j - n_{j+1} + c_j - 1)}{\prod_{j=1}^{l} \prod_{i=r_{j-1}+1}^{r_j} (a_i + n_j - 1)(a_i + n_j) \cdots (b_i + n_j - 2)},
\]

что и доказывает лемму.

Частным случаем леммы 2 является

Лемма 3. Справедливо следующее интегральное представление для обобщенных полилогарифмов:

\[
\text{Le}_{s_1, s_2, \ldots, s_n}(z) = z \int_{[0,1]^m} \frac{dx_1 dx_2 \cdots dx_m}{\prod_{j=1}^{l} (1 - z x_1 x_2 \cdots x_{r_j})},
\]

где \(r_j = s_1 + s_2 + \cdots + s_j, \) \(m = r_l. \)

Считаем далее параметры \(a_i, b_i, c_j \) целыми, причем \(b_i > a_i \geq 1, \) \(c_j \geq 1. \)

Определим индекс рациональной функции \(R(x) = P(x)/Q(x) \) как \(I(R) = \deg P - \deg Q. \) Пусть \(R(\zeta_1, \zeta_2, \ldots, \zeta_l) = R_1(\zeta_1) \cdots R_l(\zeta_l). \) Тогда сопоставим ей вектор из индексов \(I(R_1), \ldots, I(R_l)). \)

**Теорема 1. Пусть для функции \(R(\zeta_1, \zeta_2, \ldots, \zeta_l) = R_1(\zeta_1) \cdots R_l(\zeta_l) \) выполняется неравенство \(I(R_1) + I(R_2) + \cdots + I(R_j) + j \leq 0 \) при любом \(j = 1, \ldots, l, \) и все полюсы \(R_j \) лежат в множестве \(\{0, -1, -2, \ldots\}. \) Обозначим соответствующий максимальный из порядков этих полюсов через \(m_j, \) а минимальное и максимальное значения абсолютных величин полюсов всех функций \(R_j \) через \(p \) и \(P. \) Тогда при \(z \in \mathbb{C}, |z| < 1, \) сумма

\[
\sum_{n_1 \geq n_2 \geq \cdots \geq n_l \geq 1} R(n_1, n_2, \ldots, n_l) z^{n_1 - 1} \quad (5)
\]
рассматривается в виде

\[\sum_{s} P_{s}(z^{-1}) \text{Le}_{s}(z), \] (6)

где суммирование ведется по векторам \(s \), удовлетворяющим условию \(s \leq (m_1 * m_2 * \cdots * m_l) \), где ‘*’ означает либо запятую, либо плюс при каком-либо из распределении знаков (в частности, будут выполняться неравенства \(\ell(s) \leq l \) и \(w(s) \leq m_1 + m_2 + \cdots + m_l \)), а \(P_{s}(x) \) – многочлены с рациональными коэффициентами такие, что

\[\text{ord}_{z=0} P_{s}(z) \geq 1, \quad \text{ord}_{z=0} P_{s}(z) \geq p + 1 \text{ при } s \neq \emptyset, \quad \deg P_{s}(x) \leq P + 1. \]

Дополнительно, если выполняются неравенства

\[I(R_1) + I(R_2) + \cdots + I(R_j) + j \leq -1, \quad j = 1, \ldots, l, \] (7)

tо \(P_{s}(1) = 0 \) для векторов \(s \) с \(s_1 = 1 \).

Докажем вначале следующую лемму.

Лемма 4. Пусть теорема 1 верна для функций \(R \), зависящих от менее, чем \(l \) переменных (в случае \(l = 1 \) никаких предположений не требуется). Тогда теорема верна для \(R(\zeta_1, \zeta_2, \ldots, \zeta_l) = R_1(\zeta_1)R_2(\zeta_2) \cdots R_l(\zeta_l) \), где \(R_j(x) = 1/(x + p_j)^{s_j}, \quad j = 1, \ldots, l \). Условие (7) в этом случае равносильно \(s_1 \geq 2 \).

Доказательство. Требуется доказать теорему 1 для суммы

\[\sum_{n_1 \geq n_2 \geq \cdots \geq n_l \geq 1} z^{n_1 - 1} \prod_{j=1}^{l} \frac{1}{(n_j + p_j)^{s_j}}. \] (8)

причем \(\min_{1 \leq j \leq l} p_j = p \), \(\max_{1 \leq j \leq l} p_j = P \). Пусть \(r_0 = 0, \quad r_j = s_1 + s_2 + \cdots + s_j, \quad m = r_l \).

Тогда (8) можно записать в виде интеграла

\[I(p_1, p_2, \ldots, p_l) = \int_{[0,1]^m} \prod_{j=1}^{l} \frac{x_r_{j-1} x_{r_j-1}^{p_j}}{1 - zx_1 x_2 \cdots x_r_j} dx_1 dx_2 \cdots dx_m. \]

Проведем индукцию по величине \(p_1 + p_2 + \cdots + p_j \). При этом покажем только, что сумма (8) представима в виде (6), так как в каждом из разбираемых случаев нетрудно проследить за степенями многочленов, а также за ограничением на векторы получающихся обобщенных полилиогарифмов.

База индукции \((p_1 = p_2 = \cdots = p_l = 0) \) следует из леммы 3: \(I(0, 0, \ldots, 0) = z^{-1} \times \text{Le}_{s_1, s_2, \ldots, s_l}(z) \).

Рассмотрим случай \(p_j > 0 \) для любого \(j = 1, \ldots, l \). Из равенства

\[x_1 x_2 \cdots x_{r_l} = \frac{1 - (1 - zx_1 x_2 \cdots x_{r_l})}{z} \]
следует, что

\[I(p_1, p_2, \ldots, p_t) = z^{-1} I(p_1 - 1, p_2 - 1, \ldots, p_t - 1) - z^{-1} \int_{[0,1]^m} \frac{\prod_{j=1}^t (x_{r_{j-1}+1}x_{r_{j-1}+2} \cdots x_{r_j})^{p_j-1}}{\prod_{j=1}^t (1 - zx_{1}x_{2} \cdots x_{r_j})} \, dx_1 \, dx_2 \cdots dx_m. \]

В последнем интеграле пронтегрируем по переменным \(x_{r_{l-1}+1}, x_{r_{l-1}+2}, \ldots, x_{r_l} \), получим рациональное число. Полученный интеграл представляется в виде (6) по условию леммы (перед этим нужно разложить его в сумму по лемме 2), а \(I(p_1 - 1, p_2 - 1, \ldots, p_t - 1) \) представляется в виде (6) по предположению индукции. Таким образом можно считать \(p = \min_{1 \leq j \leq t} p_j = 0 \).

Пусть теперь \(p_h > 0 \) при некотором \(h > 1 \). Запишем равенство

\[
(x_{r_{h-1}+1}x_{r_{h-1}+2} \cdots x_{r_h})^{p_h} = (x_{r_{h-1}+1}x_{r_{h-1}+2} \cdots x_{r_h})^{p_h - 1} + (x_{r_{h-1}+1}x_{r_{h-1}+2} \cdots x_{r_h})^{p_h} (1 - zx_{1}x_{2} \cdots x_{r_{h-1}}) - (x_{r_{h-1}+1}x_{r_{h-1}+2} \cdots x_{r_h})^{p_h - 1} (1 - zx_{1}x_{2} \cdots x_{r_h}),
\]

из которого следует

\[
I(p_1, p_2, \ldots, p_h, \ldots, p_t) = I(p_1, p_2, \ldots, p_h - 1, \ldots, p_t) + \int_{[0,1]^m} \frac{\prod_{j=1}^t (x_{r_{j-1}+1}x_{r_{j-1}+2} \cdots x_{r_j})^{p_j}}{\prod_{j=1}^t (1 - zx_{1}x_{2} \cdots x_{r_j})} \, dx_1 \, dx_2 \cdots dx_m
\]

где \(p'_j = p_j \) при \(j \neq h \) и \(p'_h = p_h - 1 \). Два интеграла в правой части с меньшим числом множителей в знаменателе по условию леммы представляются в виде (6), а к \(I(p_1, p_2, \ldots, p_h - 1, \ldots, p_t) \) применимо предположение индукции.

Остается доказать утверждение леммы для интеграла

\[
I(p_1, 0, \ldots, 0) = \int_{[0,1]^m} \frac{(x_1x_2 \cdots x_{r_1})^{p_1}}{\prod_{j=1}^t (1 - zx_{1}x_{2} \cdots x_{r_j})} \, dx_1 \, dx_2 \cdots dx_m.
\]

Из равенства

\[
(x_1x_2 \cdots x_{r_1})^{p_1} = z^{-1}(x_1x_2 \cdots x_{r_1})^{p_1 - 1} - z^{-1}(x_1x_2 \cdots x_{r_1})^{p_1 - 1} (1 - zx_{1}x_{2} \cdots x_{r_1})
\]

следует

\[
I(p_1, 0, \ldots, 0) = z^{-1} I(p_1 - 1, 0, \ldots, 0) - z^{-1} \int_{[0,1]^m} \frac{(x_1x_2 \cdots x_{r_1})^{p_1 - 1}}{\prod_{j=2}^t (1 - zx_{1}x_{2} \cdots x_{r_j})} \, dx_1 \, dx_2 \cdots dx_m.
\]
Последний интеграл по условию леммы, а $I(p_1-1, 0, \ldots, 0)$ по предположению индукции представляются в виде (6). Лемма доказана.

Назовем δ-суммой выражение

$$
\sum_{n_1=1}^{\infty} z^{n_1-1} R_1(n_1) \sum_{n_2=1}^{\infty} R_2(n_2) \cdots \sum_{n_l=1}^{\infty} R_l(n_l),
$$

где δ_j — целые неотрицательные числа, полюсы R_j лежат на отрезке $[-p_j, -p_j]$ и являются целыми числами и для любого $j = 1, \ldots, l$ выполняется $I(R_1) + I(R_2) + \cdots + I(R_l) + j \leq 0$.

Лемма 5. Любая δ-сумма представляется в виде линейной комбинации δ-сумм, у которых $I(R_j) < 0$ для любого j. При этом справедливы следующие утверждения.

1) Если \vec{T} — вектор из максимальных порядков полюсов функций R_j, а \vec{t} — такой вектор для δ-суммы линейной комбинации, то \vec{t} может быть получен из \vec{T} вычерчиванием нескольких компонент.

2) Минимум из чисел p_j в каждой δ-сумме линейной комбинации не меньше такого минимума в исходной δ-сумме, в максимум из чисел P_j в каждой δ-сумме линейной комбинации не больше такого максимума в исходной δ-сумме.

3) Максимум из чисел $I(R_1) + I(R_2) + \cdots + I(R_l) + j$ в каждой δ-сумме линейной комбинации не больше такого максимума в исходной δ-сумме. Следовательно, если у изначальной суммы он был < -1, то в каждой δ-сумме из линейной комбинации он будет < -1.

4) Если для любого j выполнялись неравенства $p_{j+1} + \delta_j \geq P_j$ в исходной δ-сумме, то они будут выполняться и в любой δ-сумме из линейной комбинации.

5) То же утверждение, что и в 4), но для неравенства $p_j > P_{j+1}$.

Доказательство. Проведем индукцию по вектору (l, k), где k — количество функций $R_j \in I(R_j) \geq 0, 0 \leq k < l$. Векторы (l, k) мы упорядочим в соответствии с лексикографическим порядком, т.е. запись $(l_1, k_1) < (l_2, k_2)$ означает, что либо $l_1 < l_2$, либо $l_1 = l_2$ и $k_1 < k_2$.

База индукции $l = 1$ очевидна, так как в этом случае, по определению δ-суммы имеем $I(R_1) \leq -1$. Докажем утверждение для вектора (l, k) в предположении, что для меньших векторов оно доказано. Покажем при этом основное утверждение леммы. Нетрудно проследить за утверждениями 1)–5) в шаге индукции. Если $k = 0$, то доказывать ничего, ведь тогда $I(R_j) < 0$ для любого j. Пусть $k > 0$, т.е. для некоторого j выполнено $I(R_j) = 0$. Так как по условию $I(R_1) \leq -1$, имеем $j > 1$. Представим R_j в виде суммы многочлена и правильной дроби. В слагаемом с правильной дробью число k уменьшилось на 1, и к нему можно применить предположение индукции. Рассмотрим теперь второе слагаемое, в котором $R_j(x) = P(x)$, P — многочлен.

а) Пусть $j = l$. Просуммируем последнюю сумму:

$$
\sum_{n_l=1}^{n_l+\delta_l} P(n_l) = Q(n_l-1),
$$
где \(Q \) — многочлен степени \(\text{deg} P + 1 \). Таким образом, \(R_{l-1} \) умножится на \(Q \). Итак, по сравнению с исходной \(\delta \)-суммой количество знаков суммирования уменьшилось на единицу. Нетрудно видеть, что полученное выражение является \(\delta \)-суммой (вектор из индексов входящих в нее рациональных функций равен \(\{I(R_1), \ldots, I(R_{l-2}), I(R_{l-1}) + I(R_l) + 1\} \)), и значит, мы можем применить предложение индукции.

б) Пусть теперь \(R_j(x) = P(x), \) \(1 < j < l \), где \(P \) — многочлен. Переимем исходную \(\delta \)-сумму в виде

\[
\sum_{n_1=1}^{\infty} z^{n_1-1} R_1(n_1) \sum_{n_2=1}^{n_1+\delta_1} R_2(n_2) \cdots \sum_{n_{j-1}=1}^{n_{j-2}+\delta_{j-2}} R_{j-1}(n_{j-1}) \sum_{n_j=1}^{n_{j-1}+\delta_{j-1}} P(n_j) \sum_{n_{j+1}=1}^{n_j+\delta_j} f(n_{j+1}),
\]

где

\[
f(n_{j+1}) = R(n_{j+1}) \sum_{n_{j+2}=1}^{n_{j+1}+\delta_{j+1}} R_{j+2}(n_{j+2}) \cdots \sum_{n_l=1}^{n_{l-1}+\delta_{l-1}} R_l(n_l).
\]

Имеем систему равенств

\[
\sum_{n_j=1}^{n_{j-1}+\delta_{j-1}} P(n_j) \sum_{n_{j+1}=1}^{n_j+\delta_j} f(n_{j+1})
\]

\[
= \sum_{n_j=1}^{n_{j-1}+\delta_{j-1}} P(n_j) \sum_{n_{j+1}=1}^{n_j+\delta_j} f(n_{j+1}) - \sum_{n_j=1}^{n_{j-1}+\delta_{j-1}+\delta_j} P(n_j) \sum_{n_{j+1}=n_j+\delta_j+1}^{n_j+\delta_j+\delta_j} f(n_{j+1})
\]

\[
= Q_1(n_{j-1}) \sum_{n_{j+1}=1}^{n_{j-1}+\delta_{j-1}+\delta_j} f(n_{j+1}) - \sum_{n_{j+1}=n_j+\delta_j+1}^{n_j+\delta_j+\delta_j} P(n_j)
\]

\[
= Q_1(n_{j-1}) \sum_{n_{j+1}=1}^{n_{j-1}+\delta_{j-1}+\delta_j} f(n_{j+1}) - \sum_{n_{j+1}=n_j+\delta_j+1}^{n_j+\delta_j+\delta_j} Q_2(n_{j+1}) f(n_{j+1})
\]

\[
+ \sum_{n_{j+1}=1}^{\delta_{j+1}+\delta_j+\delta_j} Q_2(n_{j+1}) f(n_{j+1}),
\]

причем \(\text{deg} Q_1 = \text{deg} Q_2 = \text{deg} P + 1 \), а третье слагаемое является константой. Таким образом, исходную \(\delta \)-сумму мы представим в виде линейной комбинации трех \(\delta \)-сумм меньшей кратности с соответствующими им векторами

\[
\{I(R_1), \ldots, I(R_{j-1}) + I(R_j) + 1, I(R_{j+1}) + I(R_j) + 1, I(R_l)\},
\]

\[
\{I(R_1), \ldots, I(R_{j-1}), I(R_{j+1}) + I(R_j) + 1, \ldots, I(R_l)\},
\]

\[
\{I(R_1), \ldots, I(R_{j-1})\}.
\]

К каждой из них можно применить предложение индукции, что и доказывает утверждение леммы.
Доказательство теоремы 1. Проведем индукцию по \(l \). Предположение индукции: теорема верна для функций \(R \), зависящих от менее, чем \(l \) переменных (в случае \(l = 1 \) никаких предположений не требуется). Докажем ее для функций \(R \), зависящих от \(l \) переменных.

Применим лемму 5 при \(\delta_j = 0 \), мы можем считать, что для любого \(j \) выполняется \(I(R_j) < 0 \). Разложим каждую функцию \(R_j \) в сумму простейших дробей и представим \(R \) в виде

\[
R(\zeta_1, \ldots, \zeta_l) = \sum_{(m_1, \ldots, m_l)} \frac{B_{m, \eta}}{(\zeta_1 + u_1)^{m_1} \cdots (\zeta_l + u_l)^{m_l}},
\]

в суммах \(u_j \in U_j, m_j \leq M_j \), где \(U_j \) множество абсолютных значений (неположительных) величин полюсов \(R_j \), \(M_j \) — максимальный из порядков этих полюсов, \(B_{m, \eta} = \prod_{j=1}^l B_{m_j, u_j} \). Достаточно доказать теорему для фиксированных \(m_2, \ldots, m_l \) и \(u_2 = p_2, \ldots, u_l = p_l \), т.е. для

\[
R(\zeta_1, \ldots, \zeta_l) = \sum_{m_1 = 1}^{M_1} \sum_{u_1 \in U_1} \frac{B_{m_1, u_1}}{(\zeta_1 + u_1)^{m_1} (\zeta_2 + p_2)^{m_2} \cdots (\zeta_l + p_l)^{m_l}}.
\]

(далее для краткости будем писать \(u_1 \) вместо \(u_1 \) и \(U_1 \) весто \(U_1 \)).

Члены с \(m_1 \geq 2 \) в сумме (5) сразу же представляются в нужной форме по лемме 4. Если \(I(R_1) = -1 \), то дополнительное условие теоремы 1 не выполняется, и нам не надо заботиться о коэффициентах при полилиогарифмах с первой координатой 1. В этом случае члены с \(m_1 = 1 \) также представляют по лемме 4.

Рассмотрим далее случай \(I(R_1) \leq -2 \). В этом случае \(\sum_{u \in U} B_{1, u} = 0 \). Свернем сумму слагаемых из (5) с \(m_1 = 1 \) в интеграл вида

\[
\int_{[0,1]^m} \frac{(\sum_{u \in U} B_{1, u} x_1^u)^t}{(1 - z x_1)^t (1 - z x_1 x_2 \cdots x_r)} dx_1 dx_2 \cdots dx_r,
\]

\[
r_1 = 1, \quad m = r_t.
\]

По лемме 4 интеграл представляется в виде

\[
\sum_s P_s(z^{-1}) L_s(z).
\]

Остаётся только доказать, что \(P_s(1) = 0 \), если \(s_1 = 1 \). Так как \(\sum_{u \in U} B_{1, u} = 0 \), многочлен \(\sum_{u \in U} B_{1, u} x_1^u \) делится на \(1 - x_1 \). Итак,

\[
\sum_{u \in U} B_{1, u} x_1^u = (1 - x_1) B(x_1) = z^{-1} (1 - z x_1) B(x_1) + (1 - z^{-1}) B(x_1);
\]

соответственно наш интеграл распадается на два:

\[
z^{-1} \int_{[0,1]^m} \frac{B(x_1) \prod_{j=2}^r (1 - z x_1 x_2 \cdots x_r)}{\prod_{j=2}^r (1 - z x_1 x_2 \cdots x_r)} dx_1 dx_2 \cdots dx_r,
\]

\[
+ (1 - z^{-1}) \int_{[0,1]^m} \frac{B(x_1) \prod_{j=2}^r (1 - z x_1 x_2 \cdots x_r)}{\prod_{j=2}^r (1 - z x_1 x_2 \cdots x_r)} dx_1 dx_2 \cdots dx_r.
\]
Первый интеграл по предположению индукции представляется в нужной форме, и условие на коэффициенты там выполняется. Во втором интеграле после домножения на $1 - z^{-1}$ все многочлены будут иметь корень число 1. Итак, в представлении их суммы в виде линейной формы выполняется свойство $P_\vec{s}(1) = 0$, если $s_1 = 1$. Так как представление в виде линейной формы единственно по следствию 1, это и есть представление (10). Теорема доказана.

Из леммы 2 и теоремы 1 следует

ТЕОРЕМА 2. Пусть параметры a_i, b_i, c_j целые, причем $b_i > a_i \geq 1$ при $i = 1, \ldots, m$ и $c_j \geq 1$, $c_1 + \cdots + c_j \leq q_1 + \cdots + q_j$, где

$$q_j = \sum_{i=r_j-1+1}^{r_j} (b_i - a_i), \ j = 1, \ldots, l;$$

d_j - неотрицательные целые числа, удовлетворяющие неравенствам $d_j \leq c_j$ при $j = 1, \ldots, l$ и $\sum_{k=j}^{l+1} d_k < a_i$ при $j = 1, \ldots, l$ и $r_j - 1 < i \leq r_j$.

Тогда для $z \in \mathbb{C}$, $|z| < 1$, выполняется равенство

$$S(z) = \int_{[0,1]^m} \prod_{i=1}^{m} x_i^{a_i-1}(1-x_i)\prod_{j=1}^{l} (1- \sum_{k=1}^{r_j} x_i x_j \cdots x_{r_j})^{c_j} \ dx_1 \ dx_2 \cdots \ dx_m = \sum_{\vec{s}} P_{\vec{s}}(z^{-1}) L_{\vec{s}}(z), \quad (11)$$

gде суммирование ведется по векторам \vec{s}, удовлетворяющим условию $\vec{s} \leq (r_1 \ast (r_2 - r_1) \ast \cdots \ast (r_l - r_{l-1}))$ (в частности, будут выполняться неравенства $\ell(\vec{s}) \leq l$, $w(\vec{s}) \leq m$), а $P_{\vec{s}}(z)$ - многочлены с рациональными коэффициентами такие, что

$$\deg P_{\vec{s}}(z) \leq \max_{1 \leq i \leq m} b_i - 1$$

dля любого вектора \vec{s},

$$\ord_{z=0} P_{\vec{s}}(z) \geq d_1 + d_2 + \cdots + d_l, \quad \ord_{z=0} P_{\vec{s}}(z) \geq d_1 + d_2 + \cdots + d_l + d_{l+1} + 1 \quad (12)$$

для любого непустого вектора \vec{s} в (11). Дополнительно, если существует j такое, что $d_j < c_j$, то

$$\ord_{z=0} P_{\vec{s}}(z) \geq d_1 + d_2 + \cdots + d_l + 1.$$
Если для любого $j = 1, \ldots, l$ выполняется неравенство $c_1 + \cdots + c_j \leq q_1 + \cdots + q_{J-1}$, то $P_{\vec{s}}(1) = 0$ для векторов \vec{s} с $s_1 = 1$.

ДОКАЗАТЕЛЬСТВО. Вначале докажем теорему с менее точной оценкой на порядок нуля многочленов $P_{\vec{s}}(z)$ в точке $z = 0$, а именно,

$$\ord_{z=0} P_{\vec{s}}(z) \geq d_1 + d_2 + \cdots + d_l + 1.$$
Если для любого $j = 1, \ldots, l$ выполняется неравенство $c_1 + \cdots + c_j \leq q_1 + \cdots + q_{J-1}$, то $P_{\vec{s}}(1) = 0$ для векторов \vec{s} с $s_1 = 1$.

ДОКАЗАТЕЛЬСТВО. Вначале докажем теорему с менее точной оценкой на порядок нуля многочленов $P_{\vec{s}}(z)$ в точке $z = 0$, а именно,

$$\ord_{z=0} P_{\vec{s}}(z) \geq \min_{1 \leq i \leq m} a_i \quad \text{при} \quad \vec{s} \neq \emptyset. \quad (13)$$

Представим интеграл $S(z)$ в виде кратной суммы с помощью леммы 2. Разложим числитель функции $R(\zeta_1, \zeta_2, \ldots, \zeta_l)$ (см. (5)) в сумму мономов вида

$$Z_{\zeta_1} X_1 \zeta_1, Z_{\zeta_2} Y_2 X_2 \zeta_2, Z_{\zeta_3} Y_3 X_3 \zeta_3, \ldots, Z_{\zeta_l} Y_l X_l,$$

где

$$X_j + Y_j \leq c_j - 1, \ j = 1, \ldots, l - 1, \ X_l \leq c_l - 1, \ Z \in \mathbb{Z}. $$
Разложения кратных интегралов в линейные формы

Тогда R разлагается в сумму функций $\tilde{R}(\zeta_1, \zeta_2, \ldots, \zeta_l) = \tilde{R}_1(\zeta_1) \cdot \cdots \cdot \tilde{R}_l(\zeta_l)$, где

$$\tilde{R}_j(\zeta_j) = \frac{\zeta_j^{Y_{j-1} + X_j}}{\prod_{i=r_j-1}^{r_j-1+1}[(\zeta_j + a_i - 1)(\zeta_j + a_i) \cdots (\zeta_j + b_i - 2)]}, \quad Y_0 = 0,$$

причем для каждой такой \tilde{R} выполняется неравенство

$$I(\tilde{R}_1) + I(\tilde{R}_2) + \cdots + I(\tilde{R}_j) + j$$

$$= (X_1 - q_1) + (Y_1 + X_2 - q_2) + \cdots + (Y_{j-1} + X_j - q_j) + j$$

$$= (X_1 + Y_1 + 1) + \cdots + (X_{j-1} + Y_{j-1} + 1) + (X_j + 1) - (q_1 + q_2 + \cdots + q_j)$$

$$\leq (c_1 + c_2 + \cdots + c_j) - (q_1 + q_2 + \cdots + q_j) \leq 0.$$

Следовательно, для \tilde{R} выполняются условия теоремы 1. При этом

$$p = \min_{1 \leq i \leq m} a_i - 1, \quad P = \max_{1 \leq i \leq m} b_i - 2.$$

Применим ее для каждой \tilde{R}, получаем требуемое в теореме равенство.

Докажем теперь более точную оценку (12). В числителе подинтегрального выражения $S(z)$ подставим следующие равенства:

$$(x_1 x_2 \cdots x_{r_j})^{d_j} = \left(\frac{1 - (1 - zx_1 x_2 \cdots x_{r_j})}{z}\right)^{d_j}, \quad j = 1, \ldots, l.$$)

Это возможно сделать, так как $\sum_{k=j}^l d_k < a_i$ при $j = 1, \ldots, l$ и $r_{j-1} < i \leq r_j$. В результате получим линейную комбинацию выражений вида

$$\frac{1}{zd_1 + d_2 + \cdots + d_l} \int_{[0,1]^m} \prod_{i=1}^{m} x_i^{a_i-1} (1 - x_i)^{b_i-a_i-1} \prod_{j=1}^{l} (1 - z x_1 x_2 \cdots x_{r_j})^{c_j} \, dx_1 \, dx_2 \cdots \, dx_m$$

с переменными c'_j, причем $0 \leq c'_j \leq c_j$, а $a'_i = a_i - \sum_{k=j}^l d_k \geq d_{l+1} + 1 \geq 1$ для $j = 1, \ldots, l$ и $r_{j-1} < i \leq r_j$. Если все $c'_j = 0$ (это может быть только в случае $d_j = c_j$ для любого j), то интеграл равен константе и утверждение теоремы выполняется. Пусть теперь есть $c'_j > 0$, и j_0 – наибольший такой индекс. Пронтегрировав по переменным x_i, $i > r_{j_0}$, придем к интегралу, для которого выполняются условия теоремы 2 (это следует из того, что они выполнялись для исходного интеграла и того, что $c'_j \leq c_j$ и степени множителей $1 - x_i$ в интеграле остались прежними), а значит, по теореме 2 с (13) в его разложении $\text{ord}_{z=0} P_{\tilde{S}}(z) \geq 1$ и $\text{ord}_{z=0} P_{S}(z) \geq d_{l+1} + 1$ для непустого \tilde{S}. Учитывая множитель $1/z^{d_1 + d_2 + \cdots + d_l}$, приходим к утверждению теоремы.

Так как всегда можно положить $d_j = 0$, $j = 1, \ldots, l$, и $d_{l+1} = \min_{1 \leq i \leq m} a_i - 1$, оценка (12) не хуже оценки (13). В общем случае она лучше; например, для интеграла (3) положим $d_1 = d_2 = \cdots = d_{l+1} = n + 1$, $d_l = n - s$, $d_{l+1} = 0$, тогда $\text{ord}_{z=0} P_{S}(z) \geq l(n+1) - s$, в том числе и для $\tilde{S} = \emptyset$. Если $c_1 + c_2 + \cdots + c_l \geq \min_{1 \leq i \leq m} a_i$, то можно подобрать d_j так, что $\sum_{k=j}^l d_k = \min_{1 \leq i \leq m} a_i - 1$, $d_{l+1} = 0$, и, следовательно, для $P_{\tilde{S}}(z)$ верна оценка $\text{ord}_{z=0} P_{\tilde{S}}(z) \geq \min_{1 \leq i \leq m} a_i$ (в общем случае это неверно).
Следствие 2. Пусть в предыдущих обозначениях выполняется неравенство $c_1 + \cdots + c_j \leq q_1 + \cdots + q_j - 1$ для любого $j = 1, \ldots, l$. Тогда интеграл

$$S = \int_{[0,1]^m} \prod_{i=1}^{m} x_i^{a_i-1} (1-x_i)^{b_i-a_i-1} \prod_{j=1}^{l} (1-x_1x_2\cdots x_{r_j})^{c_j} \, dx_1 \, dx_2 \cdots dx_m$$

представляется в виде линейной формы над \mathbb{Q} от значений кратной ζ-функции, т.е.

$$S = \sum_{s} q_s \zeta(s), \quad \zeta(s) = \sum_{n_1 \geq n_2 \geq \cdots \geq n_l \geq 1} \frac{1}{n_1^{s_1} n_2^{s_2} \cdots n_l^{s_l}}, \quad q_s \in \mathbb{Q}.$$

На векторы s накладываются те же ограничения, что и в теореме 2, а кроме того, $s_1 > 1$ (что гарантирует сходимость ряда, определяющего кратную ζ-функцию).

Доказательство. Устремим $z \to 1-$ в утверждении теоремы 2 (возможность перестановки предела и интеграла гарантируется теоремой Б. Леви (см. [12, c. 348])). Осталось заметить, что

$$\lim_{z \to 1-} (1-z) \text{Le}_s(z) = 0 \quad \text{в случае } s_1 = 1.$$

3. Усиление общей теоремы при некоторых ограничениях. В некоторых случаях разложение (11) в линейную форму содержит в действительности существенно меньше обобщенных полилиногарифмов (см., например, представления (2) и (3)), чем гарантируется общей теоремой 2; именно этим случаях оказываются востребованными в арифметических приложениях. Далее нашей задачей будет дать достаточные условия на параметры интеграла $S(z)$, при которых можно значительно сузить множество полилиногарифмов, входящих в его разложение. Ограничения на степени многочленов P_x и их кратности нуля следуют из теоремы 2, и мы не будем упоминать о них.

Для вектора $s = (s_1, s_2, \ldots, s_l)$ с натуральными компонентами определим функцию

$$R(s; x) = R(s_1, s_2, \ldots, s_l; x) = \sum_{1 \leq n_1 \leq \cdots \leq n_2 \leq \cdots} \frac{1}{x^{s_1} n_2^{s_2} \cdots n_l^{s_l}}.$$

Несложно видеть, что выполняются равенства

$$
\text{Le}_s(z) = \sum_{n=1}^{\infty} R(s; n) z^n,
$$

$$R(s_1, s_2, \ldots, s_l; x) = \frac{1}{x^{s_1}} \sum_{1 \leq k \leq x} R(s_2, s_3, \ldots, s_l; k) \quad \text{при } l > 1.
$$

Обозначим через d_n наименьшее общее кратное чисел 1, 2, \ldots, n.

Лемма 6. При целом неотрицательном α выполняется равенство

$$
\sum_{n=1}^{\infty} z^{n-1} R(\bar{s}; n + \alpha) = z^{-\alpha-1} L_{\bar{s}}(z) + P(z^{-1}),
$$

где $P(z) = \sum_{k=1}^{\alpha} q_k z^k$ и $d_{\alpha+1-k}^{w(\bar{s})} \in \mathbb{Z}$ (в случае $\alpha = 0$ многочлен $P(z)$ отсутствует).

Доказательство. Обозначим левую часть равенства через $L(z)$. Тогда

$$
z^{\alpha+1} L(z) = \sum_{n=1}^{\infty} z^{n+\alpha} R(\bar{s}; n + \alpha) = \sum_{n=\alpha+1}^{\infty} z^n R(\bar{s}; n)
$$

$$
= \sum_{n=1}^{\infty} z^n R(\bar{s}; n) - \sum_{n=1}^{\alpha} z^n R(\bar{s}; n) = L_{\bar{s}}(z) - \sum_{n=1}^{\alpha} R(\bar{s}; n)z^n.
$$

Осталось поделить обе части на $z^{\alpha+1}$ и заметить, что $d_n^{w(\bar{s})} R(\bar{s}; n) \in \mathbb{Z}$ и $q_k = R(\bar{s}; \alpha + 1 - k)$.

Далее будем обозначать через S конечное множество непустых векторов, и определим соответствующее ему множество $S_0 = S \cup \{\emptyset\}$. Через s' будем обозначать конечный отрезок суммирования $[\alpha_1, \alpha_2]$ с целью неотрицательными α_1, α_2.

Следствие 3. Пусть функция $R(x)$ такова, что для любого натурального n выполняется равенство

$$
R(n) = \sum_{\bar{s} \in S} \sum_{\alpha \in s'} A_{\bar{s}, \alpha} R(\bar{s}; n + \alpha), \quad A_{\bar{s}, \alpha} \in \mathbb{C}.
$$

Тогда сумма $\sum_{n=1}^{\infty} R(n)z^{n-1}$ представляется в виде $\sum_{\bar{s} \in S \cup \{\emptyset\}} P_{\bar{s}}(z^{-1}) L_{\bar{s}}(z)$, причем $\text{ord}_{z=0} P_{\emptyset}(z) \geq 1$ и для непустого вектора \bar{s} имеем $P_{\bar{s}}(z) = \sum_{\alpha \in s'} A_{\bar{s}, \alpha} z^{\alpha+1}$.

Доказательство. Справедливо равенство

$$
L = \sum_{n=1}^{\infty} R(n)z^{n-1} = \sum_{\bar{s} \in S} \sum_{\alpha \in s'} A_{\bar{s}, \alpha} \sum_{n=1}^{\infty} z^{n-1} R(\bar{s}; n + \alpha).
$$

Применяя лемму 6, получим

$$
L = \sum_{\bar{s} \in S} \sum_{\alpha \in s'} A_{\bar{s}, \alpha} (z^{-\alpha-1} L_{\bar{s}}(z) + P_{\bar{s}, \alpha}(z^{-1}))
$$

$$
= \sum_{\bar{s} \in S} \left(\sum_{\alpha \in s'} A_{\bar{s}, \alpha} z^{-\alpha-1} \right) L_{\bar{s}}(z) + \sum_{\bar{s} \in S} \sum_{\alpha \in s'} A_{\bar{s}, \alpha} P_{\bar{s}, \alpha}(z^{-1}).
$$

Неравенство $\text{ord}_{z=0} P_{\emptyset}(z) \geq 1$ следует из леммы 6.

С помощью сравнения коэффициентов в степенных рядах при $z^{n-1}, n \geq 1$, показывается следующая лемма, обратная следствию.
Лемма 7. Пусть сумма $\sum_{n=1}^{\infty} R(n) z^{n-1}$ представляется в виде линейной комбинации $\sum_{\tilde{s} \in S_0} P_\tilde{s}(z) L_\tilde{s}(z)$, причем $\text{ord}_{z=0} P_\tilde{s}(z) \geq 1$, а для вектора $\tilde{s} \in S$ пусть $P_\tilde{s}(z) = \sum_{\alpha \in A} A_{\tilde{s}, \alpha} z^{\alpha + 1}$. Тогда для любого натурального n выполняется равенство

$$R(n) = \sum_{\tilde{s} \in S} \sum_{\alpha \in A} A_{\tilde{s}, \alpha} R(\tilde{s}; n + \alpha).$$

Леммы 6 и 7 позволяют работать не с бесконечными суммами, а с конечными, зави- сящими от натурального параметра.

Обозначим через $\mathcal{H}(\tilde{T}, p, P)$ линейное пространство функций от n, натянутое на функции $R(\tilde{s}, n + \alpha)$, где \tilde{s} подчинен вектору \tilde{T}, и $p \leq \alpha \leq P$, а через $\mathcal{L}(\tilde{T}, p, P)$ — его подпро- странство, содержащее векторы \tilde{s} с $s_j > 1$ при $j > 1$. Также обозначим через \mathcal{X}_0 под- пространство \mathcal{H} и через \mathcal{L}_0 — подпространство \mathcal{L}, для элементов которых при каждом $\tilde{s} = (s_1, s_2, \ldots)$ сумма коэффициентов по α равна нулю (\mathcal{L}_0 также будет подпространством \mathcal{X}_0).

Лемма 8. Пусть $\alpha'' > \alpha' > 0$ — целые числа, а l, m'_1, m''_1, m_j — натуральные числа. Тогда функция

$$\frac{1}{(n + \alpha')^m_1 (n + \alpha'')^m_2} R(m'_2, m_2, \ldots, m_l; n + \alpha'')$$

принадлежит пространству $\mathcal{X}_0((\max(m'_1, m''_1), m_2, \ldots, m_l), \alpha', \alpha'')$, а при $m_2, \ldots, m_l > 1$ (при $l = 1$ считаем это условие выполненным автоматически) и про- странству $\mathcal{L}_0((\max(m'_1, m''_1), m_2, \ldots, m_l), \alpha', \alpha'')$.

Доказательство. Проведем индукцию по l. Запишем разложение в сумму простейших дробей:

$$\frac{1}{(n + \alpha')^m_1 (n + \alpha'')^m_2} = \sum_{t=1}^{m'_1} \frac{B_t}{(n + \alpha')^t} + \sum_{t=1}^{m''_1} \frac{C_t}{(n + \alpha'')^t}.$$

Имеет место равенство $B_1 + C_1 = 0$, обеспечивавшее, в частности, базу индукции ($l = 1$). Пусть $l > 1$, и для $l - 1$ лемма верна. Обозначим левую часть доказываемого равенства через L. Имеем

$$L = \frac{1}{(n + \alpha')^m_1 (n + \alpha'')^m_2} \sum_{k=1}^{n + \alpha''} R(m_2, \ldots, m_l; k)$$

$$= \sum_{t=1}^{m'_1} \frac{B_t}{(n + \alpha')^t} \sum_{k=1}^{n + \alpha''} R(m_2, \ldots, m_l; k) + \sum_{t=1}^{m''_1} \frac{C_t}{(n + \alpha'')^t} \sum_{k=1}^{n + \alpha''} R(m_2, \ldots, m_l; k)$$

$$= \sum_{t=1}^{m'_1} \frac{B_t}{(n + \alpha')^t} \sum_{k=1}^{n + \alpha'} R(m_2, \ldots, m_l; k) + \sum_{t=1}^{m''_1} \frac{C_t}{(n + \alpha'')^t} \sum_{k=1}^{n + \alpha''} R(m_2, \ldots, m_l; k)$$

$$+ \sum_{t=1}^{m'_1} \frac{B_t}{(n + \alpha')^t} \sum_{k=n + \alpha' + 1}^{n + \alpha''} R(m_2, \ldots, m_l; k)$$
\[
= \sum_{t=1}^{m_i'} B_t R(t, m_2, \ldots, m_i; n + \alpha') + \sum_{t=1}^{m_i''} C_t R(t, m_2, \ldots, m_i; n + \alpha'') \\
+ \sum_{t=1}^{m_i'} \sum_{\gamma = \alpha' + 1}^{\alpha''} \frac{B_t}{(n + \alpha')^t} R(m_2, \ldots, m_i; n + \gamma).
\]
Слагаемые

\[
\frac{B_t}{(n + \alpha')^t} R(m_2, \ldots, m_i; n + \gamma)
\]

принадлежат требуемому в утверждении леммы пространству по предположению индукции. Так как \(B_1 + C_1 = 0\), выполнено

\[
\sum_{t=1}^{m_i'} B_t R(t, m_2, \ldots, m_i; n + \alpha') + \sum_{t=1}^{m_i''} C_t R(t, m_2, \ldots, m_i; n + \alpha'') \\
\in \mathcal{K}_0(((\max(m_1', m_1''), m_2, \ldots, m_i), \alpha', \alpha'')),
\]

а при \(m_2, \ldots, m_i > 1\) это выражение также принадлежит пространству \(L_0((\max(m_1', m_1''), m_2, \ldots, m_i), \alpha', \alpha'')\), что и завершает доказательство леммы.

Лемма 9. Пусть \(\alpha_1, \alpha_2, \beta_1, \gamma\) — целые неотрицательные числа такие, что \(\alpha_2 + \beta_1 \geq \alpha_1; u_1, u_2, \ldots, u_t\) — натуральные числа. Тогда для любого натурального \(n_1\) выполняется равенство

\[
\frac{1}{(n_1 + \alpha_1)^{u_1}} \sum_{n_2=1}^{n_1 + \alpha_1} R(u_2, \ldots, u_t; n_2 + \alpha_2) \\
= R(u_1, u_2, \ldots, u_t; n_1 + \alpha_1) - \frac{E}{(n_1 + \alpha_1)^{u_1}} + f(n_1),
\]

где \(f \in \mathcal{K}_0((u_1, u_2, \ldots, u_t), \alpha_1, \alpha_2 + \beta_1)\) и константа \(E\) зависит только от \((u_2, \ldots, u_t)\) и \(\alpha_2\). Дополнительно, если \(u_j > 1\) при \(j > 2\), то \(f \in L_0((u_1, u_2, \ldots, u_t), \alpha_1, \alpha_2 + \beta_1)\).

Доказательство. Левая часть доказываемого равенства может быть представлена в виде

\[
L = \frac{1}{(n_1 + \alpha_1)^{u_1}} \sum_{n_2=\alpha_2+1}^{n_1 + \alpha_2 + \beta_1} R(u_2, \ldots, u_t; n_2).
\]

Учитывая неравенство \(\alpha_2 + \beta_1 \geq \alpha_1\), имеем

\[
\sum_{n_2=\alpha_2+1}^{n_1 + \alpha_2 + \beta_1} = \sum_{n_2=1}^{n_1 + \alpha_1} + \sum_{n_2=\alpha_1+1}^{n_1 + \alpha_2 + \beta_1} - \sum_{n_2=1}^{n_2=\alpha_2+1}
\]

Если \(\alpha_2 + \beta_1 = \alpha_1\), то вторая сумма отсутствует (считаем ее равной нулю). Отсюда

\[
L = R(u_1, u_2, \ldots, u_t; n_1 + \alpha_1) \\
+ \frac{1}{(n_1 + \alpha_1)^{u_1}} \sum_{n_2=1}^{n_1 + \alpha_2 + \beta_1} R(u_2, \ldots, u_t; n_2) - \frac{1}{(n_1 + \alpha_1)^{u_1}} \sum_{n_2=1}^{\alpha_2} R(u_2, \ldots, u_t; n_2).
\]
Обозначим не зависящую от \(n_1\) и \(\alpha_1\) константу \(\sum_{n_2=1}^{\alpha_2} R(u_2, \ldots, u_l; n_2)\) через \(E\). Остаётся заметить, что к слагаемым

\[
\frac{1}{(n_1 + \alpha_1)^{n_1}} R(u_2, \ldots, u_l; n_1 + \alpha'_1)
\]

при \(\alpha_1 + 1 \leq \alpha'_1 \leq \alpha_2 + \beta_1\) применима лемма 8. Лемма 9 доказана.

Лемма 10. Пусть \(\beta_j, j = 1, \ldots, l-1, \) и \(p_j \leq P_j, T_j, j = 1, \ldots, l, \) целые неотрицательные числа, причем \(p_{j+1} + \beta_j \geq 2\) для любого \(j = 1, \ldots, l-1; R_1(x), \ldots, R_l(x)\) - рациональные функции от \(x\), причем \(I(R_j) < 0\). Полюсы функций \(R_j(x)\) сосредоточены в целых точках на отрезке \([-P_j, -p_j]\) и кратности полюсов не превосходят \(T_j\). Тогда

\[
S = R_1(n_1) \sum_{n_2=1}^{n_1+\beta_1} R_2(n_2) \cdots \sum_{n_l=1}^{n_l-1+\beta_{l-1}-1} R_l(n_l) \in \mathcal{K}\left(\tilde{T}, p_1, p_l + \sum_{j=1}^{l-1} \beta_j\right).
\]

Если при этом \(I(R_j) < -1\) при \(j > 1\), то \(S \in \mathcal{L}\left(\tilde{T}, p_1, p_l + \sum_{j=1}^{l-1} \beta_j\right)\). Дополнительно, если \(I(R_1) < -1\), то \(S \in \mathcal{L}_0\left(\tilde{T}, p_1, p_l + \sum_{j=1}^{l-1} \beta_j\right)\).

Доказательство. Проведем индукцию по \(l\). При \(l = 1\) суммы по \(n_2, \ldots, n_l\) отсутствуют и утверждение леммы очевидно после разложения \(R_1\) в сумму простых дробей. Пусть \(l > 1\), и для \(l - 1\) лемма верна. Применим предположение индукции к выражению \(f(n_2)\) в сумме

\[
S = R_1(n_1) \sum_{n_2=1}^{n_1+\beta_1} f(n_2), \quad f \in \mathcal{K}\left((T_2, T_3, \ldots, T_l), m_2, p_l + \sum_{j=2}^{l-1} \beta_j\right).
\]

Покажем вначале, что \(S\) лежит в \(\mathcal{K}\left(\tilde{T}, p_1, p_l + \sum_{j=1}^{l-1} \beta_j\right)\). В силу линейности достаточно доказать, что

\[
\frac{1}{(n_1 + \alpha_1)^{n_1}} \sum_{n_2=1}^{n_1+\beta_1} R(\tilde{u}; n_2 + \alpha_2) \in \mathcal{K}\left(\tilde{T}, p_1, p_l + \sum_{j=1}^{l-1} \beta_j\right),
\]

где \(p_1 \leq \alpha_1 \leq P_1, 1 \leq t_1 \leq T_1, \tilde{u} = (u_2, \ldots, u_l)\) получен \((T_2, T_3, \ldots, T_l), p_2 \leq \alpha_2 \leq P_1 + \sum_{j=2}^{l-1} \beta_j\). Это следует из леммы 9.

Пусть теперь \(I(R_j) < -1\) при \(j > 1\). Тогда по предположению индукции

\[
f \in \mathcal{L}_0\left((T_2, T_3, \ldots, T_l), m_2, p_l + \sum_{j=2}^{l-1} \beta_j\right).
\]

В качестве образующих \(\mathcal{L}_0\) возьмем \(R(\tilde{u}; n_2 + \alpha_2) R(\tilde{u}; n_2 + \alpha'_2) - R(\tilde{u}; n_2 + \alpha_2')\) с \(u_2 = 1\) и \(u_j > 1\) при \(j > 2\). При \(u_j > 1\) по лемме 9

\[
\frac{1}{(n_1 + \alpha_1)^{n_1}} \sum_{n_2=1}^{n_1+\beta_1} R(\tilde{u}; n_2 + \alpha_2) \in \mathcal{L}\left(\tilde{T}, p_1, p_l + \sum_{j=1}^{l-1} \beta_j\right),
\]

где \(p_1 \leq \alpha_1 \leq P_1, 1 \leq t_1 \leq T_1, \tilde{u} = (u_2, \ldots, u_l)\) получен \((T_2, T_3, \ldots, T_l), p_2 \leq \alpha_2 \leq P_1 + \sum_{j=2}^{l-1} \beta_j\). Это следует из леммы 9.
Разложения кратных интегралов в линейные формы

699

а если \(t_1 > 1 \), то также принадлежит \(L_0 \). Пусть теперь \(u_2 = 1 \) и \(u_j > 1 \) при \(j > 2 \). Тогда по лемме 9

\[
\frac{1}{(n_1 + \alpha_1) t_1} \sum_{n_2=1}^{n_1 + \beta_1} \left(R(\bar{u}; n_2 + \alpha_2) - R(\bar{u}; n_2 + \alpha_2') \right) = \frac{E\alpha_n - E\alpha_n'}{(n_1 + \alpha_1) t_1} + g(n_1),
\]

где \(g \in L_0 \left(\vec{T}, p_1, P_1 + \sum_{j=1}^{l-1} \beta_j \right) \),

а следовательно, и все выражение лежит в \(\mathcal{L} \), а при \(t_1 > 1 \) и в \(L_0 \). Осталось доказать утверждение леммы при \(I(R_1) < -1 \). В этом случае вместо \(R_1(x) \) мы можем рассмотривать функции

\[
\frac{1}{(x + \alpha_1) t_1}, \quad t_1 > 1, \quad \text{и} \quad \frac{1}{x + \alpha_1'} - \frac{1}{x + \alpha_1}.
\]

Случай \(t_1 > 1 \) разображен выше. Аналогично показывается, что при \(u_j > 1 \)

\[
\left(\frac{1}{n_1 + \alpha_1'} - \frac{1}{n_1 + \alpha_1} \right) \sum_{n_2=1}^{n_1 + \beta_1} R(\bar{u}; n_2 + \alpha_2) \in L_0 \left(\vec{T}, p_1, P_1 + \sum_{j=1}^{l-1} \beta_j \right),
\]

а при \(u_2 = 1 \) и \(u_j > 1 \), \(j > 2 \),

\[
\left(\frac{1}{n_1 + \alpha_1'} - \frac{1}{n_1 + \alpha_1} \right) \sum_{n_2=1}^{n_1 + \beta_1} (R(\bar{u}; n_2 + \alpha_2') - R(\bar{u}; n_2 + \alpha_2')) \in L_0 \left(\vec{T}, p_1, P_1 + \sum_{j=1}^{l-1} \beta_j \right).
\]

Лемма полностью доказана.

Перейдем теперь к представлению интеграла \(S(z) \) (см. (4)) в виде линейной формы от обобщенных полигамрафмов.

Теорема 3. Пусть выполнены неравенства \(c_1 + \cdots + c_j \leq q_1 + \cdots + q_j \) и \(a_{i_2} + c_j - b_{i_1} \geq 0 \) при всех \(j = 1, \ldots, l \), \(i_1 \in [r_{j-1} + 1, r_j] \), \(i_2 \in [r_j + 1, r_{j+1}] \). Тогда для \(z \in \mathbb{C}, |z| < 1 \), верно равенство \(S(z) = \sum_s P_s(z^{-1}) L_s(z) \), где суммирование ведется по векторам \(\vec{s} \), подчиненным \((r_1, r_2 - r_1, \ldots, r_l - r_{l-1}) \). Дополнительно, если \(c_1 \leq q_1 \) и \(c_{j-1} + c_j \leq q_j \) при \(j = 2, \ldots, l \), то в этих векторах \(\vec{s} \) выполняется \(s_j > 1 \) при \(j > 1 \).

Доказательство. Разложим интеграл в кратную сумму (см. лемму 2)

\[
S(z) = \sum_{n_1=1}^{\infty} \sum_{n_2=1}^{n_1} \cdots \sum_{n_l=1}^{n_{l-1}} z^{n_1-1} \prod_{i=1}^{m} \Gamma(b_i - a_i) \prod_{j=1}^{l} \Gamma(c_j) \\
\times \prod_{j=1}^{l} \Gamma(1) \left(n_j - n_{j+1} + 1 \right) (n_j - n_{j+1} + 2) \cdots \left(n_j - n_{j+1} + c_j - 1 \right) \right], \quad \prod_{j=1}^{l} \prod_{i=r_j+1}^{r_{j+1}} (n_j + a_i - 1) (n_j + a_i) \cdots (n_j + b_i - 2)
\]

Заметим, что суммирование \(n_{j+1} \) можно вести не до \(n_j \), а до \(n_j + c_j - 1 \), так как добавленные слагаемые равны нулю. Далее мы действуем так же, как и при доказательстве теоремы 2. Разложим числитель суммируемой функции в сумму мономов вида
\[Zn_1X_1+X_2Y_1+n_2Y_2+X_2Y_3+\ldots+n_{l-1}X_{l-1}+X_l, \text{ где } X_j+Y_j \leq c_j-1, Y_l = 0, Z \in Z. \] Теперь при фиксированных \(X_j, Y_j \) рассмотрим сумму

\[\sum_{n_1=1}^{\infty} z^{n_1-1} R_1(n_1) \sum_{n_2=1}^{\infty} R_2(n_2) \ldots \sum_{n_{l-1}=1}^{\infty} R_{l-1}(n_{l-1}) \]

где

\[R_j(n) = \frac{Y_j+X_j}{n_j} \prod_{i=r_j+1}^{r_j} \left((n_j+a_i-1)(n_j+a_i) \ldots (n_j+b_i-2) \right), \quad Y_0 = 0. \]

Рассмотрим вначале случай \(c_1 \leq q_1 \) и \(c_{j-1} + c_j \leq q_j \) при \(j = 2, \ldots, l \). В этом случае \(I(R_1) \leq -1 \) и \(I(R_j) < -1 \) при \(j > 1 \). Применим к сумме (15) лемму 10. При этом \(\bar{T} = (r_1, r_2 - r_1, \ldots, r_l - r_{l-1}), \beta_j = c_j - 1, \)

\[m_j = \min_{r_j+1 \leq r \leq r_j} a_i - 1, \quad P_j = \max_{r_{j-1}+1 \leq r \leq r_j} b_i - 2, \]

и необходимые неравенства на \(p_j \) и \(P_j \) выполняются вследствие неравенств \(a_i + c_j - b_i \geq 0 \) для всех \(j = 1, \ldots, l, \]

и \(i \in [r_{j-1} + 1, r_j], \quad i \in [r_j + 1, r_{j+1}] \). Следовательно, сумма (15) лежит в \(\mathcal{F}(\bar{T}, p_1, P_1 + \sum_{j=1}^{l-1} \beta_j) \). Для перехода к линейным формам от полиграфиров вспомогательный леммой 6.

В более общем случае, при \(c_1 + \ldots + c_j \leq q_1 + \ldots + q_j, \) сумма (15) является \(\delta \)-суммой с неравенствами \(p_{j+1} + \delta_j \geq P_j \) вследствие ограничений на параметры интеграла. С помощью леммы 5 представим (15) в виде линейной комбинации \(\delta \)-сумм с \(I(R_j) < 0, \) в каждой из которых также выполнены неравенства \(p_{j+1} + \delta_j \geq P_j \). Поэтому к ним можно применить лемму 10, причем вектор \(\bar{T} \) в этих симметриях получен \((r_1, r_2 - r_1, \ldots, r_l - r_{l-1}), \) означает, сумма (15) принадлежит \(\mathcal{K}(\bar{T}, p_1, P_1 + \sum_{j=1}^{l-1} \beta_j) \). После этого применяем лемму 6.

Полагая в теореме \(r_j = j \) при \(j = 1, \ldots, l, \) получим

Следствие 4. При \(a_{j+1} + c_j - b_i \geq 0 \) для \(i = 1, \ldots, l - 1 \) и \(\sum_{j=1}^{l} (b_j - a_j - c_j) \geq 0 \) для любого \(j = 1, \ldots, l, \) справедливо разложение

\[\int_{[0, 1]^l} \prod_{i=1}^{l} x_i^{a_j-1} (1 - x_i)^{b_j-a_j-1} \prod_{j=1}^{l} (1 - x_1 x_2 \ldots x_j)^c_j \, dx_1 \, dx_2 \ldots dx_l = \sum_{k=0}^{l} F_k(z^{-1}) \Lambda(1)_{k}(z). \]

Полагая в теореме \(r_j = 2j \) при \(j = 1, \ldots, l, \) получим

Следствие 5. Пусть

\[(b_{2j-1} - a_{2j-1}) + (b_{2j} - a_{2j}) \geq c_j - 1 + c_j, \quad j = 1, \ldots, l, \quad c_0 = 0, \]

\[a_{i_2} + c_j - b_i \geq 0, \quad \quad i_2 \in [2j - 1, 2j], \quad i_2 \in [2j + 1, 2j + 2], \quad j = 1, \ldots, l - 1. \]

Тогда справедливо разложение

\[\int_{[0, 1]^{2l}} \prod_{i=1}^{2l} x_i^{a_j-1} (1 - x_i)^{b_j-a_j-1} \prod_{j=1}^{l} (1 - x_1 x_2 \ldots x_{2j})^{c_j} \, dx_1 \, dx_2 \ldots dx_{2l} \]

\[= \sum_{k=0}^{l} F_k(z^{-1}) \Lambda(2)_{k}(z) + \sum_{k=0}^{l-1} T_k(z^{-1}) \Lambda_{1, (2)}_{k}(z). \]

Дополнительно, если \((b_1 - a_1) + (b_2 - a_2) > c_1, \) то \(T_k(1) = 0 \) для любого \(k = 1, \ldots, l - 1. \)

Полагая в теореме \(r_j = 2j - 1 \) при \(j = 1, \ldots, l + 1, \) получим
Следствие 6. Пусть

\[b_1 - a_1 \geq c_1, \quad (b_{2j-2} - a_{2j-2}) + (b_{2j-1} - a_{2j-1}) \geq c_{j-1} + c_j, \quad j = 2, \ldots, l, \]
\[a_{2i} + c_j - b_{i_1} \geq 0, \quad i_1 \in [\max(1, 2j - 2), 2j - 1], \quad i_2 \in [2j, 2j + 1], \quad j = 1, \ldots, l - 1. \]

Тогда справедливо разложение

\[
\int_{[0,1]^{2l+1}} \frac{\prod_{i=1}^{2l+1} x_i^{a_i-1} (1 - x_i)^{b_i-a_i-1}}{\prod_{j=1}^{l} (1 - zx_1 x_2 \cdots x_{2j-1})^{c_j}} \, dx_1 \, dx_2 \cdots dx_{2l+1} = \sum_{k=0}^{l} P_k(z^{-1}) L_{1,\{2\} \cdot} \left(z \right) + \sum_{k=0}^{l} T_k(z^{-1}) L_{1,\{2\} \cdot} \left(z \right).
\]

С помощью этих следствий получим представления для интеграла \(V(z) \) (обобщения интегралов \(V_{m,n} \) в (1)). В следующей теореме рассмотрен случай четного \(m \).

Теорема 4. Пусть параметры \(A_i, i = 0, \ldots, 2l, \quad B_i, i = 1, \ldots, 2l, \) - натуральные числа, удовлетворяющие неравенствам

\[B_i > A_i > 0 \quad \text{при всех} \ i, \quad B_i > A_{i-2} \quad \text{при четных} \ i, \]
\[A_3 > A_2, \quad A_5 > A_4, \ldots, A_{2l-1} > A_{2l-2}, \quad B_2 > B_1, \quad B_4 > B_3, \ldots, B_{2l-2} > B_{2l-3}, \]
\[A_2 + B_1 > A_0 + A_1, \quad A_4 + B_3 > A_3 + B_2, \ldots, A_{2l} + B_{2l-1} > A_{2l-1} + B_{2l-2}. \]

Тогда

\[
\int_{[0,1]^{2l}} \frac{\prod_{i=1}^{2l} x_i^{A_i-1} (1 - x_i)^{B_i-A_i-1}}{\prod_{j=1}^{l} (1 - z x_1 x_2 \cdots x_{2j})^{A_0} A_0} \, dx_1 \, dx_2 \cdots dx_{2l} = \sum_{k=0}^{l} P_k(z^{-1}) L_{1,\{2\} \cdot} \left(z \right) + \sum_{k=0}^{l} T_k(z^{-1}) L_{1,\{2\} \cdot} \left(z \right).
\]

Доказательство. Имеем равенство (см. [7, теорема 1] или [9, теорема])

\[
\int_{[0,1]^{2l}} \frac{\prod_{i=1}^{2l} x_i^{A_i-1} (1 - x_i)^{B_i-A_i-1}}{\prod_{j=1}^{l} (1 - z x_1 x_2 \cdots x_{2j})^{B_2 - A_2j}} \, dx_1 \, dx_2 \cdots dx_{2l} = \gamma \int_{[0,1]^{2l}} \frac{\prod_{i=1}^{2l} x_i^{A_i-1} (1 - x_i)^{B_i-A_i-1}}{\prod_{j=1}^{l} (1 - z x_1 x_2 \cdots x_{2j})^{B_2j - A_2j}} \, dx_1 \, dx_2 \cdots dx_{2l},
\]

где

\[\gamma = \frac{\Gamma(A_2)}{\Gamma(A_0)} \prod_{j=1}^{l} \frac{\Gamma(B_{2j} - A_{2j})}{\Gamma(B_{2j} - A_{2j-2})}. \]

\(a_i = A_i \) при нечетном \(i \) и \(a_i = A_{i-2} \) при четном \(i \). Далее применяем следствие 5.

Для разложения интегралов \(V(z) \) при нечетном \(m \) воспользуемся следующим вспомогательным утверждением.
Лемма 11. Пусть параметры \(A_i, i = 0, \ldots, 2l + 1 \), \(B_i, i = 1, \ldots, 2l + 1 \), - натуральные числа, удовлетворяющие неравенствам

\[
B_i > A_i > 0 \quad \text{при всех} \quad i, \quad B_1 > A_0, \quad B_i > A_{i-2} \quad \text{при нечетных} \quad i \geq 3, \\
A_2 \geq A_1, \quad A_4 \geq A_3, \ldots, \quad A_{2l} \geq A_{2l-1}, \quad B_3 \geq B_2, \quad B_5 \geq B_4, \ldots, \quad B_{2l-1} \geq B_{2l-2}, \\
A_1 \geq A_0, \quad A_3 + B_2 \geq A_2 + B_1, \quad A_5 + B_4 \geq A_4 + B_3, \ldots, \quad A_{2l+1} + B_{2l} \geq A_{2l} + B_{2l-1}.
\]

Тогда

\[
\int_{[0,1]^{2l+1}} \frac{\prod_{i=1}^{2l+1} x_i^{A_i-1} (1 - x_i)^{B_i - A_i-1}}{(1 - z + z x_1 - z x_1 x_2 + z x_1 x_2 x_3 - \cdots + z x_1 x_2 \cdots x_{2l+1})^{A_0}} \, dx_1 \, dx_2 \cdots dx_{2l+1} \\
= \sum_{k=0}^{l} P_k(z^{-1}) L_{1,\{2\}}(z) + \sum_{k=0}^{l} T_k(z^{-1}) L_{\{2\}}(z).
\]

ДОКАЗАТЕЛЬСТВО. Имеем равенство (см. теорему из [9])

\[
\int_{[0,1]^{2l+1}} \frac{\prod_{i=1}^{2l+1} x_i^{A_i-1} (1 - x_i)^{B_i - A_i-1}}{(1 - z + z x_1 - z x_1 x_2 + z x_1 x_2 x_3 - \cdots + z x_1 x_2 \cdots x_{2l+1})^{A_0}} \, dx_1 \, dx_2 \cdots dx_{2l+1} \\
= \gamma \int_{[0,1]^{2l+1}} \frac{\prod_{i=1}^{2l+1} x_i^{a_i-1} (1 - x_i)^{b_i - a_i-1}}{(1 - z + z x_1 - z x_1 x_2 \cdots x_{2j-1})^{B_{2j-1} - A_{2j-1}}} \, dx_1 \, dx_2 \cdots dx_{2l+1},
\]

где

\[
\gamma = \frac{\Gamma(A_{2l+1}) \Gamma(B_1 - A_1)}{\Gamma(A_0) \Gamma(B_1 - A_0)} \prod_{j=1}^{l} \frac{\Gamma(B_{2j+1} - A_{2j+1})}{\Gamma(B_{2j+1} - A_{2j+1})},
\]

\(a_i = A_i \) при четном \(i \), \(a_1 = A_0 \) и \(a_i = A_{i-2} \) при нечетном \(i \geq 3 \). Далее применяем следствие 6.

Можно доказать аналоги лемм 8–10 и теоремы 3 для обобщенных полилогарифмов со строгими неравенствами \(Li(z) \). При этом вместо функции \(R(\tilde{s}; x) \) используется

\[
\hat{R}(s_1, s_2, \ldots, s_l; x) = \sum_{1 \leq n_1 < \cdots < n_2 < x} \frac{1}{x^{s_1} n_2^{s_2} \cdots n_l^{s_l}},
\]

а неравенства \(p_{j+1} + \beta_j \leq p_j \) заменяются на \(p_j > p_j \). Так мы доказываем следующую теорему, которая является аналогом теоремы 3.

Теорема 5. Пусть выполнены неравенства \(c_1 + \cdots + c_l \leq q_1 + \cdots + q_l \) и \(a_i \geq b_i \) при всех \(j = 1, \ldots, l, i_1 \in [r_{j-1} + 1, r_j], i_2 \in [r_j + 1, r_{j+1}] \). Тогда для \(z \in \mathbb{C}, |z| < 1, \) верно неравенство \(S(z) = \sum_{\tilde{s}} P_\tilde{s}(z^{-1}) Li(z) \), где суммирование ведется по векторам \(\tilde{s} \), подчиненным \((r_1, r_2 - r_1, \ldots, r_{l-1} - r_{l-1}) \). Дополнительно, если \(c_1 \leq q_1 \) и \(c_{j-1} + c_j \leq q_j \) при \(j = 2, \ldots, l \), то в этих векторах \(\tilde{s} \) выполняется \(s_j > 1 \) при \(j > 1 \).

Полагая в теореме \(r_j = j \) при \(j = 1, \ldots, l \), получим
Следствие 7. Пусть \(b_1 > a_1 \geq b_2 > a_2 \geq \cdots \geq b_l > a_l \) и \(\sum_{i=1}^{j} (b_i - a_i - c_i) \geq 0 \) для любого \(j = 1, \ldots, l \) справедливо разложение

\[
\int_{[0,1]^l} \frac{\prod_{i=1}^{l} x_i^{a_i-1} (1-x_i)^{b_i-a_i-1}}{\prod_{j=1}^{l} (1-zx_1x_2 \cdots x_j)^{c_j}} \, dx_1 \, dx_2 \cdots dx_l = \sum_{k=0}^{l} P_k(z^{-1}) \text{Li}_{\{1\}_k}(z).
\]

Полагая в теореме \(r_j = 2j \) при \(j = 1, \ldots, l \), получим

Следствие 8. Пусть

\[
(b_{2j-1} - a_{2j-1}) + (b_{2j} - a_{2j}) \geq c_{j-1} + c_j, \quad j = 1, \ldots, l, \quad c_0 = 0,
\]

\[
a_{i_1} \geq b_{i_2}, \quad i_1 \in [2j-1, 2j], \quad i_2 \in [2j+1, 2j+2], \quad j = 1, \ldots, l-1.
\]

Тогда справедливо разложение

\[
\int_{[0,1]^{2l}} \frac{\prod_{i=1}^{2l} x_i^{a_i-1} (1-x_i)^{b_i-a_i-1}}{\prod_{j=1}^{l} (1-zx_1x_2 \cdots x_{2j})^{c_j}} \, dx_1 \, dx_2 \cdots dx_{2l} = \sum_{k=0}^{l} P_k(z^{-1}) \text{Li}_{\{2\}_k}(z) + \sum_{k=0}^{l-1} T_k(z^{-1}) \text{Li}_{1,\{2\}_k}(z).
\]

В частном случае эта аналитическая конструкция использовалась в [6].

Для дальнейшего нам потребуется теорема о поведении обобщенных полилогарифмов при преобразовании \(z \mapsto -z/(1-z) \).

Пусть у нас есть вектор \(\vec{s} = (s_1, s_2, \ldots, s_l) \) с натуральными компонентами. Сопоставим ему вектор \(\vec{s}' \) по следующему правилу:

\[
\vec{s}' = ([1] s_{1-1}, 2, \{1\} s_{2-2}, \ldots, 2, \{1\} s_{l-1-2}, 2, \{1\} s_{l-1-1});
\]

если \(s_k = 1 \) при некотором \(k, 1 < k < l \), то вместо \('2, \{1\} s_{k-2}, ' \) следует писать \('1+ ' \).

Будем называть вектор \(\vec{s}' \) двойственным к \(\vec{s} \), так как из определения \(\vec{s}' \) следует, что \((\vec{s}') = \vec{s} \). Если \(\vec{s} \neq (1) \), то один и только один из двойственных векторов начинается с единицы, а их веса равны. Е. А. Уланский подсказал следующее определение двойственного вектора. Сопоставив вектору \(\vec{s} \) слово \(x_0^{s_1-1} x_1 \cdots x_0^{s_k-1} x_1 = vx_1 \). Пусть \(\sigma \) – отображение, действующее на таких словах и меняющее буквы \(x_0 \) и \(x_1 \) между собой. Тогда двойственный вектор \(\vec{s}' \) соответствует слову \(\sigma(v)x_1 \). Лемма 12 (о двойственности). Пусть \(|z| < 1 \) и \(|z| < |1-z| \). Тогда выполняется равенство

\[
\text{Le}_{\vec{s}}\left(-\frac{z}{1-z} \right) = -\text{Le}_{\vec{s}'}(z).
\]
Доказательство. При $z = 0$ утверждение очевидно, поэтому далее считаем $z \neq 0$. Воспользуемся интегральным представлением $L_0(x)$ из леммы 3:

$$L_{s_1,s_2,\ldots,s_l}(z) = z \int_{[0,1]^m} \frac{dx_1 \, dx_2 \cdots dx_m}{\prod_{j=1}^l (1 - z x_{1j} x_2 \cdots x_{r_j})},$$

где $r_j = s_1 + s_2 + \cdots + s_j, m = r_1$. Преобразуем интеграл с помощью теоремы из [9] для $a_i = 1, b_i = 2$:

$$\int_{[0,1]^m} \frac{dx_1 \, dx_2 \cdots dx_m}{\prod_{j=1}^l (1 - z x_{1j} x_2 \cdots x_{r_j})} = \int_{[0,1]^m} \frac{dx_1 \, dx_2 \cdots dx_m}{1 - z Q_s(x_1, x_2, \ldots, x_m)},$$

где

$$Q_s(x_1, x_2, \ldots, x_m) = x_1 \cdots x_{r_1-1} - x_1 \cdots x_{r_1} + \cdots + x_1 \cdots x_{r_l-1} - x_1 \cdots x_{r_l}.$$

Полставим вместо z в равенство (16) дробь $-z/(1 - z)$:

$$\int_{[0,1]^m} \frac{dx_1 \, dx_2 \cdots dx_m}{1 + z Q_s(x_1, x_2, \ldots, x_m)/(1 - z)} = (1 - z) \int_{[0,1]^m} \frac{dx_1 \, dx_2 \cdots dx_m}{1 - z + z Q_s(x_1, x_2, \ldots, x_m)}$$

$$= (1 - z) \int_{[0,1]^m} \frac{dx_1 \, dx_2 \cdots dx_m}{1 - z Q'_s(x_1, x_2, \ldots, x_m)},$$

где $Q'_s(x_1, x_2, \ldots, x_m) = 1 - Q_s(x_1, x_2, \ldots, x_m)$. Сделаем в последнем интеграле замену $x_m \mapsto 1 - x_m$ и заметим, что

$$Q'_s(x_1, x_2, \ldots, 1 - x_m) = x_1 \cdots x'_{r_1-1} - x_1 \cdots x'_{r_1} + \cdots + x_1 \cdots x'_{r_l-1} - x_1 \cdots x'_{r_l}$$

соответствует вектору \vec{s}' (собственно это и мотивирует его определение). Здесь мы использовали обозначения $l' = \ell(\vec{s}')$ и $r'_j = s'_1 + s'_2 + \cdots + s'_j$. Снова сворачивая интеграл (после замены) в правой части (17) по тождеству из [9], запишем равенство (17) на языке полигонографов:

$$\frac{L_{s'}(-z/(1 - z))}{-z/(1 - z)} = (1 - z) \frac{L_{s'}(z)}{z},$$

что равносильно утверждению теоремы.

Используя лемму 11 и преобразование $z \mapsto -z/(1 - z)$, можно доказать следующую теорему, дающую разложение $V(z)$ при нечетном m.

Теорема 6. Пусть параметры $A_i, i = 0, \ldots, 2l + 1, B_i, i = 1, \ldots, 2l + 1$, натуральные числа, удовлетворяющие неравенствам леммы 11 и, дополнительно, $B_{2j} > A_{2j-2}$ при $j = 1, \ldots, l$, $B_{2l+1} > A_{2l}$ и $\sum_{j=1}^{l+1} (B_{2j-1} - A_{2j-1}) \geq A_0$. Тогда

$$I(z) = \int_{[0,1]^{2l+1}} \frac{\prod_{i=1}^{2l+1} x_{i-1}^A (1 - x_1) B_i - A_i - 1} {1 - z x_1 + z x_1 x_2 - z x_1 x_2 x_3 + \cdots - z x_1 x_2 \cdots x_{2l+1}} dz$$

$$= \sum_{k=0}^{l} P_k (z^{-1}) L_{\{2\}_k,1}(z) + \sum_{k=0}^{l-1} T_k (z^{-1}) L_{\{2\}_k,1}(z) + U(z^{-1}).$$
Доказательство. Так как $B_i > A_i > 0$ при всех i, а также $B_{2j} > A_{2j-2}$ при $j = 1, \ldots, l$ и $B_{2l+1} > A_{2l}$, то (см. [7, теорема 2] или [9, теорема 1])

$$I(z) = \gamma \int_{[0,1]^{2l+1}} \prod_{i=1}^{2l+1} x_i^{a_i-1} (1-x_i) B_i \cdot x_1 \cdot x_2 \cdots dx_1 dx_2 \cdots dx_{2l+1},$$

где

$$\gamma = \frac{\Gamma(A_{2l+1}) \Gamma(B_{2l+1} - A_{2l+1})}{\Gamma(A_0) \Gamma(B_{2l+1} - A_{2l})} \prod_{j=1}^{l} \frac{\Gamma(B_{2j} - A_{2j})}{\Gamma(B_{2j} - A_{2j-2})}.$$

$a_i = A_i$ при нечетном $i < 2l$, $a_{2l+1} = A_{2l}$ и $a_i = A_{i-2}$ при четном i. Проверим теперь условие $c_1 + \ldots + c_k \leq q_1 + \ldots + q_k$ при $k = 1, \ldots, l + 1$ для интеграла в правой части, которое дает разложение в линейную форму от полилогарифмов по теореме 2. При $k = 1, \ldots, l$ имеем

$$(q_1 + \cdots + q_k) - (c_1 + \cdots + c_k) = \sum_{j=1}^{k} (B_j - A_{j-1}) - \sum_{j=1}^{k} (B_{2j} - A_{2j})$$

$$= (A_{2k} - A_{2k-1}) + (B_1 - A_0) + \sum_{j=2}^{k} (B_{2j-1} - A_{2k-3}) > 0$$

(в оценке использовались неравенства на параметры A_i, B_i из условия леммы 11). При $k = 2l + 1$

$$(q_1 + \cdots + q_{2l+1}) - (c_1 + \cdots + c_{2l+1}) = \sum_{j=1}^{l+1} (B_{2j-1} - A_{2j-1}) - A_0 \geq 0.$$

Обозначим интеграл, фигурирующий в лемме 11, через $J(z)$. Имеем равенство

$$I(z) = \frac{1}{(1-z)^A_0} J \left(\frac{-z}{1-z} \right)$$

$$= \frac{1}{(1-z)^A_0} \sum_{k=0}^{l} P_k \left(\frac{-1-z}{z} \right) \left(\frac{-z}{1-z} \right)$$

$$+ \sum_{k=0}^{l} T_k \left(\frac{-1-z}{z} \right) \left(\frac{-z}{1-z} \right)$$

$$= \sum_{k=0}^{l} \tilde{P}_k(z) \left(\frac{-z}{1-z} \right) + \sum_{k=0}^{l-1} \tilde{T}_k(z) \left(\frac{-z}{1-z} \right) + \tilde{U}(z),$$

где $\tilde{P}_k(z)$, $\tilde{T}_k(z)$, $\tilde{U}(z)$ — рациональные функции. В последнем равенстве мы использовали лемму 12 для пар векторов $(1, \{2\}_k)$ и $(\{2\}_k, 1)$ (мы считаем, что $\text{Le}_2(z) = 1$ и $I_0(z)$ даёт слагаемое $\tilde{U}(z)$). Сравнивая с разложением
И (z) = \sum_{a} P_a(z^{-1}) \log (z)
 и учитывая линейную независимость обобщенных полилогарифмов над C(z), заключаем, что функции \\tilde{P}_k(z), \\tilde{T}_k(z), \\tilde{U}(z) в действительности являются многочленами от аргумента z^{-1}. В промежуточных выкладках предполагается, что z находитcя в области \{ z \in \mathbb{C} : |z| < 1, |1 - z| \}. Но в конечном равенстве, с помощью аналитического продолжения, можно считать, что |z| < 1. Теорема доказана.

Из равенства \log_{2,k} (1) = 2(1 - 2^{1-2k}) \zeta (2k) и \log_{2,k,1} (1) = 2(2k + 1) (см. [13] и [7]) следует, что в условиях теорем 4 и 6 интегралы V_m (1) могут быть представлены в виде линейной формы от 1 и чисел \zeta (k) с рациональными коэффициентами, где натуральные k имеют ту же четность, что и m. С помощью теоремы 6 и теоремы 2 из [7] показывается разложение интеграла из [5].

Автор выражает благодарность чл.-корр. РАН Ю. В. Нестеренко за помощь, оказанную при написании статьи.

СПИСОК ЦИТИРОВАННОЙ ЛИТЕРАТУРЫ