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Abstract. I will discuss some identities for generalized hypergeometric series
that were discovered quite recently in connection with rational approxima-

tions to π, π2 and π4. A curious thing is that most of these identities have

“automatic” proofs (using creative telescoping), and a problem is to provide
“human” proofs by means of classical hypergeometric summation and trans-

formation formulas.

Let me say from the beginning that the subject of my lecture is a brief exposi-
tion of two topics in number theory, about rational approximations to numbers of
the form

√
d/π and

√
d/π2, and about Apéry-like rational approximations to the

number ζ(4) = π4/90. These approximations are deeply related to certain unusual
transformations of generalized hypergeometric series. Some of these transforma-
tions can be shown by means of creative telescoping due to Gosper–Zeilberger, but
this does not provide us a way to deduce a general form for such transformations
which is really needed to do some new results in number theory. I address the prob-
lems of providing human proofs for the transformations and their generalizations
to specialists in special functions well represented at this conference.

1. Guillera’s generalization of Ramanujan’s series for 1/π

In 1914 S. Ramanujan recorded a list of 17 series for 1/π, from which we indicate
the simplest one

(1)
∞∑

n=0

( 1
2 )3n
n!3

(4n + 1) · (−1)n =
2
π

and also two quite impressive examples
∞∑

n=0

( 1
4 )n( 1

2 )n( 3
4 )n

n!3
(21460n + 1123) · (−1)n

8822n+1
=

4
π

,(2)

∞∑
n=0

( 1
4 )n( 1

2 )n( 3
4 )n

n!3
(26390n + 1103) · 1

994n+2
=

1
2π
√

2
(3)

which produce rapidly converging (rational) approximations to π. Here

(a)n =
Γ(a + n)

Γ(a)
=

{
a(a + 1) · · · (a + n− 1) for n ≥ 1,

1 for n = 0,
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denotes the Pochhammer symbol (the rising factorial). The Pochhammer prod-
ucts occurring in all formulae of this type may be written in terms of binomial
coefficients:

( 1
2 )3n
n!3

= 2−6n

(
2n

n

)3

,
( 1
3 )n( 1

2 )n( 2
3 )n

n!3
= 2−2n3−3n

(
2n

n

)
(3n)!
n!3

,

( 1
4 )n( 1

2 )n( 3
4 )n

n!3
= 2−8n (4n)!

n!4
,

( 1
6 )n( 1

2 )n( 5
6 )n

n!3
= 12−3n (6n)!

n!3(3n)!
.

Ramanujan’s original list was subsequently extended to several other series. Here
are two more celebrated examples:

∞∑
n=0

( 1
3 )n( 1

2 )n( 2
3 )n

n!3
(14151n + 827) · (−1)n

5002n+1
=

3
√

3
π

,(4)

∞∑
n=0

( 1
6 )n( 1

2 )n( 5
6 )n

n!3
(545140134n + 13591409) · (−1)n

533603n+2
=

3
2π
√

10005
.(5)

Formula (4) is proven by H.H. Chan, W.-C. Liaw and V. Tan and (5) is the Chud-
novskys’ famous formula which enabled them to hold the record for the calculation
of π in 1989–94. On the left-hand side of each formula (1)–(5) we have linear
combinations of a (generalized) hypergeometric series

(6) mFm−1

(
a1, a2, . . . , am

b2, . . . , bm

∣∣∣∣ z

)
=
∞∑

n=0

(a1)n(a2)n · · · (am)n

(b2)n · · · (bm)n

zn

n!

and its derivative at a point close to the origin. The rapid convergence of the series
in (2)–(5) may be used for proving the quantitative irrationality of the numbers
π
√

d with d ∈ N.
Although Ramanujan did not indicate how he arrived at his series, he hinted that

these series belong to what is now known as ‘the theories of elliptic functions to
alternative bases’. The first rigorous mathematical proofs of Ramanujan’s series and
their generalizations were given by the Borweins and Chudnovskys. These proofs
are now significantly simplified and reduced to the theory of classical modular forms
in recent works of Heng Huat Chan, Yifan Yang and their collaborators. I do not
go in details of that proofs (although they also depend on some hypergeometric
transformations) but indicate hints of an automatic proof on the example of the
simplest Ramanujan’s identity (1) given in 1994 by D. Zeilberger (and his automatic
collaborator S. B. Ekhad).

Zeilberger’s proof goes the following way. One verifies the (terminating) identity

(7)
∞∑

n=0

(1/2)2n(−k)n

n!2(3/2 + k)n
(4n + 1)(−1)n =

Γ(3/2 + k)
Γ(3/2)Γ(1 + k)

for all non-negative integers k. To do this, divide both sides of (7) by the right-hand
side and denote the summand on the left by F (n, k); then take

G(n, k) =
(2n + 1)2

(2n + 2k + 3)(4n + 1)
F (n, k)

with the motive that F (n, k+1)−F (n, k) = G(n, k)−G(n−1, k), hence
∑

n F (n, k)
is a constant, which is seen to be 1 by plugging in k = 0. Finally, to deduce (1) one
takes k = −1/2, which is legitimate in view of Carlson’s theorem.
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If one wishes to use the latter method of proof for other Ramanujan-type for-
mulae, ingenuity is required in order to put the new parameter k in the right place.
This was done only recently by J. Guillera (2002–2007), who used the method to
prove some other identities of Ramanujan (in those cases when z has only 2 and 3
in its prime decomposition). If somebody doubts the applicability of the method,
then take into account that the purely hypergeometric origin of the method and
its independence from the elliptic and modular stuff allowed Guillera to prove new
generalizations of Ramanujan-type series, namely,

∞∑
n=0

( 1
2 )5n
n!5

(20n2 + 8n + 1)
(−1)n

22n
=

8
π2

,(8)

∞∑
n=0

( 1
2 )5n
n!5

(820n2 + 180n + 1)
(−1)n

210n
=

128
π2

,(9)

∞∑
n=0

( 1
2 )3n( 1

4 )n( 3
4 )n

n!5
(120n2 + 34n + 3)

1
24n

=
32
π2

,(10)

and also to find experimentally four additional formulae
∞∑

n=0

( 1
2 )n( 1

4 )n( 3
4 )n( 1

6 )n( 5
6 )n

n!5
(1640n2 + 278n + 15)

(−1)n

210n

?=
256

√
3

3π2
,(11)

∞∑
n=0

( 1
2 )n( 1

4 )n( 3
4 )n( 1

3 )n( 2
3 )n

n!5
(252n2 + 63n + 5)

(−1)n

48n

?=
48
π2

,(12)

∞∑
n=0

( 1
2 )n( 1

3 )n( 2
3 )n( 1

6 )n( 5
6 )n

n!5
(5418n2 + 693n + 29)

(−1)n

803n

?=
128

√
5

π2
,(13)

∞∑
n=0

( 1
2 )n( 1

8 )n( 3
8 )n( 5

8 )n( 7
8 )n

n!5
(1920n2 + 304n + 15)

1
74n

?=
56
√

7
π2

.(14)

As Guillera notices, the series in (12)–(14) are closely related to the series
∞∑

n=0

( 1
2 )n( 1

4 )n( 3
4 )n

n!3
(28n + 3)

(−1)n

48n
=

16
π
√

3
,

∞∑
n=0

( 1
2 )n( 1

6 )n( 5
6 )n

n!3
(5418n + 263)

(−1)n

803n
=

640
√

15
3π

,

∞∑
n=0

( 1
2 )n( 1

4 )n( 3
4 )n

n!3
(40n + 3)

1
74n

=
49

3π
√

3
,

respectively, proven by elliptic or modular methods. However, there is no obvious
way to deduce any of formulae (8)–(14) by modular means; the problem lies in the
fact that the (Zariski closure of the) projective monodromy group for the corre-
sponding series F (z) =

∑∞
n=0 unzn is always O5(R), which is essentially ‘richer’

than O3(R) for classical Ramanujan’s series.
There exists also the higher-dimensional identity

∞∑
n=0

( 1
2 )7n
n!7

(168n3 + 76n2 + 14n + 1)
1

26n

?=
32
π3

,

discovered by B. Gourevich in 2002 (using an integer relations algorithm).
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Guillera also succeeded in finding another generalizations of the formulae for
1/π and 1/π2, although parts of his proofs remain incomplete. These formulae are
parametric versions of the previous ones; they look like strange transformations of
certain hypergeometric series. Let me indicate some of them as a problem.

Problem 1. For any real a ≥ 0, prove that

f1(a) =
∞∑

n=0

(a + 1
2 )3n

(a + 1)3n

(
6(n + a) + 1

)
· 1
4n

?=
2 · 4a+1/2

π cos2 πa
·
(

Γ(a + 1)Γ( 1
2 )

Γ(a + 1
2 )

)3

+
(4a)2

2a− 1

∞∑
n=0

( 1
2 )n(a + 1

2 )n

(a + 1)n( 3
2 − a)n

,

f2(a) =
∞∑

n=0

(a + 1
2 )3n

(a + 1)3n

(
42(n + a) + 5

)
· 1
26n

?=
2 · (26)a+1/2

π cos2 πa
·
(

Γ(a + 1)Γ( 1
2 )

Γ(a + 1
2 )

)3

+
27a2

2a− 1

∞∑
n=0

(a + 1
2 )2n

(2a + 1)n( 3
2 − a)n

,

and

F1(a) =
∞∑

n=0

(a + 1
2 )5n

(a + 1)5n

(
20(n + a)2 + 8(n + a) + 1

)
· (−1)n

4n

?=
2

π cos πa
·
(

Γ(a + 1)Γ( 1
2 )

Γ(a + 1
2 )

)2

f1(a) +
25a3

2a− 1

∞∑
n=0

( 1
2 )2n(a + 1

2 )n

(a + 1)2n( 3
2 − a)n

,

F2(a) =
∞∑

n=0

(a + 1
2 )5n

(a + 1)5n

(
820(n + a)2 + 180(n + a) + 13

)
· (−1)n

210n

?=
24a+3

π cos πa
·
(

Γ(a + 1)Γ( 1
2 )

Γ(a + 1
2 )

)2

f2(a) +
211a3

2a− 1

∞∑
n=0

(a + 1
2 )3n

(2a + 1)2n( 3
2 − a)n

,

F̃2(a) =
∞∑

n=0

(a + 1
2 )3n(a + 1

4 )n(a + 3
4 )n

(a + 1)5n

(
120(n + a)2 + 34(n + a) + 3

)
· 1
24n

?=
2−2a+1

π cos 2πa
·
Γ(a + 1)2Γ( 1

4 )Γ( 3
4 )

Γ(a + 1
4 )Γ(a + 3

4 )
f2(a) +

29a3

4a− 1

∞∑
n=0

( 1
2 )3n

(a + 1)2n( 3
2 − 2a)n

.

Specializing a = 0 one gets formulae for 1/π and 1/π2, respectively. There is no
hope that these identities allow elliptic or modular proofs.

2. Apéry-like rational approximations to ζ(4)

In 1978 R. Apéry showed the irrationality of ζ(3). His rational approximations
to the number in question (known nowadays as Apéry’s constant) have the form
vn/un ∈ Q for n = 0, 1, 2, . . . , where the denominators {un} = {un}n=0,1,... and
numerators {vn} = {vn}n=0,1,... satisfy the same polynomial recurrence

(n + 1)3un+1 − (2n + 1)(17n2 + 17n + 5)un + n3un−1 = 0

with the initial data

u0 = 1, u1 = 5, v0 = 0, v1 = 6.
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Then
lim

n→∞

vn

un
= ζ(3)

and, surprisingly, the denominators {un} are integers:

(15) un =
n∑

k=0

(
n

k

)2(
n + k

k

)2

∈ Z, n = 0, 1, 2, . . . ,

while the numerators {vn} are ‘close’ to being integers. Since that discovery there
was a big search of a way to extend Apéry’s proof to other zeta values but, sur-
prisingly, even the case of ζ(4) (which, of course, known to be irrational) remains
open. In 2002, I proposed a construction of Apéry-like approximations to ζ(4). The
approximations are related to the general Bailey’s transformation of the 9F8 very-
well-poised and balanced hypergeometric series. A special choice of the parameters
(when the transformation group acts trivially) gives one an Apéry-like recurrence
for ζ(4) (indicated below), while in order to get an arithmetic result (namely, to
measure the quality of rational approximations to ζ(4)) one needs to use the full
transformation group of order 51840. But then we are faced to a certain arithmetic
conjecture about denominators of the rational approximations which remains un-
proven. Let me explain hypergeometric details of the construction in the simplest
(recurrence) case.

For each n = 0, 1, 2, . . . , consider the following two rational functions:

(16) Rn(t) = (−1)n
(
t +

n

2

)∏n
l=1(t− l)2 ·

∏n
l=1(t + n + l)2∏n

l=0(t + l)4

and

(17) R̃n(t) =
n!

∏n
l=1(t− l)∏n

l=0(t + l)2

n∑
j=0

(
n

j

)2(
n + j

n

)∏n−1
l=0 (t− j + l)

n!
.

Problem 2. Prove that the following equality is valid for any n ≥ 0:

(18) − 1
3

∞∑
ν=1

dRn(t)
dt

∣∣∣∣
t=ν

=
1
6

∞∑
ν=1

d2R̃n(t)
dt2

∣∣∣∣
t=ν

.

The series on the left-hand side is the sequence unζ(4) − vn, n = 0, 1, 2, . . . , of
rational approximations to ζ(4) from my 2002 contribution; both the un and vn

satisfy the Apéry-like recursion

(n + 1)5un+1 − 3(2n + 1)(3n2 + 3n + 1)(15n2 + 15n + 4)un

− 3n3(3n− 1)(3n + 1)un−1 = 0 for n ≥ 1,(19)

with the initial data u0 = 1, u1 = 12 and v0 = 0, v1 = 13.
Concerning the right-hand side of (18), write

(20) R̃n(t) =
n∑

k=0

(
A

(n)
k

(t + k)2
+

B
(n)
k

t + k

)
=

n∑
k=0

(
Ak

(t + k)2
+

Bk

t + k

)
,

where

(21) Ak =
(
R̃n(t)(t + k)2

)∣∣
t=−k

, Bk =
d
(
R̃n(t)(t + k)2

)
dt

∣∣
t=−k

,
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and also
n∑

k=0

Bk =
n∑

k=0

Rest=−k R̃n(t) = −Rest=∞ R̃n(t) = 0.

Then
1
6

∞∑
ν=1

d2R̃n(t)
dt2

∣∣∣∣
t=ν

=
1
6

∞∑
ν=1

n∑
k=0

(
6Ak

(ν + k)4
+

2Bk

(ν + k)3

)

=
n∑

k=0

Ak

∞∑
ν=1

1
(ν + k)4

+
1
3

n∑
k=0

Bk

∞∑
ν=1

1
(ν + k)3

=
n∑

k=0

Ak

(
ζ(4)−

k∑
l=1

1
l4

)
+

1
3

n∑
k=0

Bk

(
ζ(3)−

k∑
l=1

1
l3

)

=
n∑

k=0

Ak · ζ(4) +
1
3

n∑
k=0

Bk · ζ(3)−
n∑

k=0

k∑
l=1

(
Ak

l4
+

Bk

3l3

)
.

In view of (21) we see that

(22)
1
6

∞∑
ν=1

d2R̃n(t)
dt2

∣∣∣∣
t=ν

= ũnζ(4)− ṽn,

where

ũn =
n∑

k=0

A
(n)
k =

n∑
k=0

(
n

k

)2(
n + k

n

) n∑
j=0

(
n

j

)2(
n + j

n

)(
k + j

n

)
,(23)

ṽn =
n∑

k=0

k∑
l=1

(
A

(n)
k

l4
+

B
(n)
k

3l3

)
.(24)

The equality un = ũn (cf. (23)) for any n ≥ 0 was first established by C. Krat-
tenthaler and T. Rivoal. I have verified the equality vn = ṽn (using the recursion
for vn and the representation (24) for ṽn) up to n = 100. This has led me to the
expectation (18).

Note that for applications in number theory we need the general form of iden-
tity (18) which is not known (but the general form of the left-hand side is known).
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